IEEE Trans Neural Syst Rehabil Eng. 2022;30:2557-2566. doi: 10.1109/TNSRE.2022.3204247. Epub 2022 Sep 15.
Hybrid exoskeletons, which combine functional electrical stimulation (FES) with a motorized testbed, can potentially improve the rehabilitation of people with movement disorders. However, hybrid exoskeletons have inherently nonlinear and uncertain dynamics, including combinations of discrete modes that switch between different continuous dynamic subsystems, which complicate closed-loop control. A particular complication is the uncertain muscle control effectiveness associated with FES. In this work, adaptive integral concurrent learning (ICL) motor and FES controllers are developed for a hybrid biceps curl exoskeleton, which are designed to achieve opportunistic and data-based learning of the uncertain human and electromechanical testbed parameters. Global exponential trajectory tracking and parameter estimation errors are proven through a Lyapunov-based stability analysis. The motor effectiveness is assumed to be unknown, and, to help with fatigue reduction, FES is enabled to switch between multiple electrodes on the biceps brachii, further complicating the analysis. A consequence of switching between the different uncertain subsystems is that the parameters must be opportunistically learned for each subsystem (i.e. each electrode and the motor), while that subsystem is active. Experiments were performed to validate the developed ICL controllers on twelve healthy participants. The average (± standard deviation) position tracking errors across each participant were 1.44 ± 5.32 deg, -0.25 ± 2.85 deg, and -0.17 ± 2.66 deg across biceps Curls 1-3, 4-7, and 8-10, respectively, where the average across the entire experiment was 0.28 ± 3.53 deg.
混合式外骨骼将功能性电刺激 (FES) 与电动试验台相结合,有可能改善运动障碍患者的康复效果。然而,混合式外骨骼具有固有的非线性和不确定性动力学,包括离散模式与不同连续动态子系统之间的组合切换,这使得闭环控制变得复杂。一个特别的复杂因素是与 FES 相关的不确定肌肉控制效果。在这项工作中,为双头肌卷曲外骨骼开发了自适应积分并发学习(ICL)电机和 FES 控制器,旨在实现对不确定的人和机电试验台参数的机会性和基于数据的学习。通过基于 Lyapunov 的稳定性分析证明了电机和 FES 的全局指数轨迹跟踪和参数估计误差。假设电机效果未知,为了帮助减少疲劳,FES 可在肱二头肌上的多个电极之间切换,这进一步增加了分析的复杂性。在不同不确定子系统之间切换的结果是,必须为每个子系统(即每个电极和电机)在该子系统处于活动状态时,机会性地学习参数。在 12 名健康参与者身上进行了实验以验证所开发的 ICL 控制器。每个参与者的平均(±标准偏差)位置跟踪误差分别为 1.44 ± 5.32 度、-0.25 ± 2.85 度和-0.17 ± 2.66 度,在 1-3、4-7 和 8-10 的二头肌卷曲中,整个实验的平均值为 0.28 ± 3.53 度。