Suppr超能文献

基于口服营养保健品的肥胖管理改进干预措施:负载紫檀芪的壳聚糖纳米颗粒。

Improved oral nutraceutical-based intervention for the management of obesity: pterostilbene-loaded chitosan nanoparticles.

作者信息

Heikal Lamia A, El-Kamel Amal H, Mehanna Radwa A, Khalifa Hoda M, Hassaan Passainte S

机构信息

Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azarita, Postal code: 21521, Alexandria, Egypt.

Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.

出版信息

Nanomedicine (Lond). 2022 Jun;17(15):1055-1075. doi: 10.2217/nnm-2022-0158. Epub 2022 Sep 6.

Abstract

To formulate and assess the oral anti-obesity effect of polymeric-based pterostilbene (PS)-loaded nanoparticles. Pterostilbene-hydroxypropyl β-cyclodextrin inclusion complex loaded in chitosan nanoparticles (PS/HPβCD-NPs) were prepared and characterized . Cytotoxicity, pharmacokinetics and anti-obesity effects were assessed on Caco-2 cell line and high-fat-diet-induced obesity rat model, respectively. assessment included histological examination, protein and gene expression of obesity biomarkers in adipose tissues. Safe PS/HPβCD-NPs were successfully prepared with improved bioavailability compared with free PS. PS/HPβCD-NPs showed an improved anti-obesity effect, as supported by histological examination, lipid profile, gene expression and protein expression of SIRT1, COX2, IL-6 and leptin. Orally administered PS nanoparticles represent a new and promising anti-obesity strategy owing to the sustainable weight loss and minimal side effects; this may be of great socio-economic impact.

摘要

制备并评估基于聚合物的负载紫檀芪(PS)纳米颗粒的口服抗肥胖效果。制备并表征了负载于壳聚糖纳米颗粒中的紫檀芪 - 羟丙基β - 环糊精包合物纳米颗粒(PS/HPβCD - NPs)。分别在Caco - 2细胞系和高脂饮食诱导的肥胖大鼠模型上评估细胞毒性、药代动力学和抗肥胖效果。评估包括组织学检查、脂肪组织中肥胖生物标志物的蛋白质和基因表达。成功制备了安全的PS/HPβCD - NPs,与游离PS相比,其生物利用度有所提高。组织学检查、血脂谱、SIRT1、COX2、IL - 6和瘦素的基因表达及蛋白质表达均表明PS/HPβCD - NPs具有改善的抗肥胖效果。口服给药的PS纳米颗粒由于可持续减重和副作用最小,代表了一种新的、有前景的抗肥胖策略;这可能具有重大的社会经济影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验