De Marco Maria Letizia, Baaziz Walid, Sharna Sharmin, Devred François, Poleunis Claude, Chevillot-Biraud Alexandre, Nowak Sophie, Haddad Ryma, Odziomek Mateusz, Boissière Cédric, Debecker Damien P, Ersen Ovidiu, Peron Jennifer, Faustini Marco
Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France.
Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France.
ACS Nano. 2022 Oct 25;16(10):15837-15849. doi: 10.1021/acsnano.2c05465. Epub 2022 Sep 6.
High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition-property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of characterization techniques; notably, transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials.
高熵合金(HEA)纳米颗粒在催化和能源领域的多种应用中具有吸引力。目前人们致力于建立成分-性能关系以提高催化活性或选择性。同样重要的是,开发将基于HEA的材料加工成复杂结构的实用制造方法是其在催化领域应用的关键要求。然而,将纳米HEA成型为避免分层或坍塌的分级结构仍然是一个巨大挑战。在此,我们通过引入一种简单的软化学路线来克服这一问题,该路线用于制备基于HEA纳米颗粒的有序大孔和介孔材料,这些材料具有高表面积、热稳定性以及对CO氧化的催化活性。该过程基于从含有五种不同贵金属前驱体和聚合物胶乳珠的水溶液中进行喷雾干燥。退火后,聚合物起到双重作用:模板和还原剂,使得仅在350℃就能形成基于HEA纳米颗粒的多孔网络。通过一系列表征技术研究了大孔和介孔材料的形成机理和稳定性;值得注意的是,透射电子显微镜表明多孔结构在高达800℃时仍保持稳定。重要的是,该过程绿色、可扩展且通用,并且有可能扩展到其他类别的HEA材料。