Suppr超能文献

患者报告疼痛部位的量化:一种自动化测量方法的开发。

Quantification of Patient-Reported Pain Locations: Development of an Automated Measurement Method.

机构信息

Author Affiliations: College of Nursing, King Saud bin Abdulaziz University for Health Sciences (Dr Abudawood), Jeddah, Saudi Arabia; Department of Biobehavioral Nursing Science, College of Nursing (Drs Yoo, Yao, and Wilkie), and Herbert Wertheim College of Engineering (Mr Garg), University of Florida, Gainesville; Department of Biobehavioral Health Science, College of Nursing (Dr Wilkie), and Department of Medicine, College of Medicine (Dr Molokie), University of Illinois at Chicago; and Jesse Brown Veterans Administration Medical Center (Dr Molokie), Chicago, IL.

出版信息

Comput Inform Nurs. 2023 May 1;41(5):346-355. doi: 10.1097/CIN.0000000000000875.

Abstract

Patient-reported pain locations are critical for comprehensive pain assessment. Our study aim was to introduce an automated process for measuring the location and distribution of pain collected during a routine outpatient clinic visit. In a cross-sectional study, 116 adults with sickle cell disease-associated pain completed PAIN Report It Ⓡ . This computer-based instrument includes a two-dimensional, digital body outline on which patients mark their pain location. Using the ImageJ software, we calculated the percentage of the body surface area marked as painful and summarized data with descriptive statistics and a pain frequency map. The painful body areas most frequently marked were the left leg-front (73%), right leg-front (72%), upper back (72%), and lower back (70%). The frequency of pain marks in each of the 48 body segments ranged from 3 to 79 (mean, 33.2 ± 21.9). The mean percentage of painful body surface area per segment was 10.8% ± 7.5% (ranging from 1.3% to 33.1%). Patient-reported pain locations can be easily analyzed from digital drawings using an algorithm created via the free ImageJ software. This method may enhance comprehensive pain assessment, facilitating research and personalized care over time for patients with various pain conditions.

摘要

患者自述的疼痛部位对于全面的疼痛评估至关重要。我们的研究目的是引入一种自动化流程,用于测量在常规门诊就诊期间收集的疼痛部位和分布情况。在一项横断面研究中,116 名患有镰状细胞病相关疼痛的成年人完成了 PAIN Report It Ⓡ 。这是一种基于计算机的工具,包括一个二维数字人体轮廓图,患者可以在上面标记疼痛部位。我们使用 ImageJ 软件计算了标记为疼痛的身体表面积的百分比,并使用描述性统计和疼痛频率图来总结数据。最常标记的疼痛身体区域是左腿前侧(73%)、右腿前侧(72%)、上背部(72%)和下背部(70%)。每个 48 个身体部位的疼痛标记频率范围为 3 至 79(平均值为 33.2 ± 21.9)。每个部位的疼痛体表面积百分比平均值为 10.8% ± 7.5%(范围为 1.3%至 33.1%)。使用免费的 ImageJ 软件创建的算法可以轻松地从数字绘图中分析患者自述的疼痛部位。这种方法可以增强全面的疼痛评估,随着时间的推移,为各种疼痛状况的患者提供研究和个性化护理。

相似文献

2
A Novel Measure of Pain Location in Adults with Sickle Cell Disease.成人镰状细胞病疼痛位置的新度量方法。
Pain Manag Nurs. 2022 Dec;23(6):693-702. doi: 10.1016/j.pmn.2022.09.004. Epub 2022 Oct 17.
4
Image-based documentation of vulvodynia pain location.基于图像的外阴痛疼痛位置记录。
Pain Manag. 2022 May;12(4):417-424. doi: 10.2217/pmt-2021-0110. Epub 2022 Jan 21.
9
Computerized quantification of pain drawings.疼痛图的计算机量化
Scand J Pain. 2019 Dec 18;20(1):175-189. doi: 10.1515/sjpain-2019-0082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验