Suppr超能文献

在查询 OMOP CDM 数据库时保护隐私。

Preserving Privacy when Querying OMOP CDM Databases.

机构信息

DETI/IEETA, University of Aveiro, Portugal.

Department of Computation, University of A Coruña, Spain.

出版信息

Stud Health Technol Inform. 2022 Aug 31;298:163-164. doi: 10.3233/SHTI220930.

Abstract

Anonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid inadequate disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset. However, some studies have shown that simple anonymisation procedures can sometimes be reverted using specific patients' characteristics. In this work, we propose a secure architecture to share information from distributed databases without compromising the subjects' privacy. The anonymiser system was validated using the OMOP CDM data schema, which is widely adopted in observational research studies.

摘要

匿名化目前是分享敏感个人信息时面临的最大挑战之一。其重要性在很大程度上取决于应用领域,但在处理健康信息时,这会成为更严重的问题。避免披露不足的一种更简单的方法是确保从原始数据集中删除所有可以直接与个人关联的数据。然而,一些研究表明,简单的匿名化程序有时可以通过特定患者的特征来恢复。在这项工作中,我们提出了一种安全的架构来共享分布式数据库中的信息,同时不损害主体的隐私。该匿名系统使用 OMOP CDM 数据模式进行了验证,该模式在观察性研究中被广泛采用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验