文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ATR-FTIR 光谱结合化学计量学快速分类识别精油的种类和化学型。

Rapid Classification and Recognition Method of the Species and Chemotypes of Essential Oils by ATR-FTIR Spectroscopy Coupled with Chemometrics.

机构信息

Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.

Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.

出版信息

Molecules. 2022 Aug 31;27(17):5618. doi: 10.3390/molecules27175618.


DOI:10.3390/molecules27175618
PMID:36080384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9458032/
Abstract

In the present work, the applicability of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, coupled with chemometric tools in recognizing essential oils (EOs) for routine control, was evaluated. EOs belonging to , , and families and to and species were analyzed, and the performance of several untargeted approaches, based on the synergistic combination of ATR-FTIR and Partial Least Squares Discriminant Analysis (PLS-DA), was tested to classify the species and chemotypes. Different spectra pre-processing methods were employed, and the robustness of the built models was tested by means of a Receiver Operating Characteristic (ROC) curve and random permutations test. The application of these approaches revealed fruitful results in terms of sensitivity and specificity, highlighting the potentiality of ATR-FTIR and chemometrics techniques to be used as a sensitive, cost-effective, and rapid tool to differentiate EO samples according to their species and chemotype.

摘要

在本工作中,评估了衰减全反射-傅里叶变换红外(ATR-FTIR)光谱结合化学计量学工具在识别常规控制用精油(EO)方面的适用性。分析了属于 、 、 和 科以及 和 种的 EO,并测试了几种基于 ATR-FTIR 和偏最小二乘判别分析(PLS-DA)协同组合的无目标方法的性能,以对物种和化学型进行分类。使用了不同的光谱预处理方法,并通过接收者操作特征(ROC)曲线和随机排列检验来测试所建模型的稳健性。这些方法的应用在灵敏度和特异性方面取得了丰硕的成果,突出了 ATR-FTIR 和化学计量学技术作为一种敏感、经济有效且快速的工具,根据其物种和化学型对 EO 样品进行区分的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/d1ae361563ab/molecules-27-05618-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/7421bae5644b/molecules-27-05618-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/29ea5251b4c6/molecules-27-05618-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/1d4dd270f84c/molecules-27-05618-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/92cac5284f0c/molecules-27-05618-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/95c007a50e96/molecules-27-05618-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/f40bd711480d/molecules-27-05618-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/eaa10deb9724/molecules-27-05618-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/d1ae361563ab/molecules-27-05618-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/7421bae5644b/molecules-27-05618-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/29ea5251b4c6/molecules-27-05618-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/1d4dd270f84c/molecules-27-05618-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/92cac5284f0c/molecules-27-05618-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/95c007a50e96/molecules-27-05618-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/f40bd711480d/molecules-27-05618-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/eaa10deb9724/molecules-27-05618-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a903/9458032/d1ae361563ab/molecules-27-05618-g008.jpg

相似文献

[1]
Rapid Classification and Recognition Method of the Species and Chemotypes of Essential Oils by ATR-FTIR Spectroscopy Coupled with Chemometrics.

Molecules. 2022-8-31

[2]
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometric analysis for detection and quantification of adulteration in lavender and citronella essential oils.

Phytochem Anal. 2021-11

[3]
Fourier transform infrared spectroscopy and chemometrics for the discrimination of animal fur types.

Spectrochim Acta A Mol Biomol Spectrosc. 2022-6-5

[4]
A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics.

Spectrochim Acta A Mol Biomol Spectrosc. 2023-3-5

[5]
Spectrochemical differentiation of meningioma tumours based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy.

Anal Bioanal Chem. 2019-12-21

[6]
Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Combined with Chemometrics Methods for the Classification of Lingzhi Species.

Molecules. 2019-6-13

[7]
Comparison of chemometric assisted targeted and untargeted approaches for the prediction of radical scavenging activity of ylang-ylang essential oils.

J Chromatogr B Analyt Technol Biomed Life Sci. 2022-2-15

[8]
Rapid discrimination and screening of volatile markers for varietal recognition of Curcumae Radix using ATR-FTIR and HS-GC-MS combined with chemometrics.

J Ethnopharmacol. 2021-11-15

[9]
ATR-FTIR spectroscopy combined with chemometrics to assess the spectral markers of irradiated baijius and their potential application in irradiation dose control.

Spectrochim Acta A Mol Biomol Spectrosc. 2023-12-5

[10]
Detection and discrimination of sedative-hypnotics in spiked beverage dry residues using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy combined with chemometrics.

J Forensic Sci. 2023-1

引用本文的文献

[1]
Recovery of Bioactive Compounds from the Biomass of Aromatic Plants After Distillation Using NADES: A Sustainable Alternative Extraction Method.

Molecules. 2025-2-28

[2]
Alginate-Based Hydrogels Enriched with Lavender Essential Oil: Evaluation of Physicochemical Properties, Antimicrobial Activity, and In Vivo Biocompatibility.

Pharmaceutics. 2023-11-9

[3]
Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils.

Molecules. 2023-3-29

本文引用的文献

[1]
Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections.

Microorganisms. 2022-4-15

[2]
Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin ( Emeric ex Loisel.) Cultivated in Tuscan-Emilian Apennines.

Molecules. 2021-10-12

[3]
Crop Yield and Essential Oil Composition of Two Chemotypes along Three Years of Organic Cultivation in a Hilly Area of Central Italy.

Molecules. 2021-8-23

[4]
Quantification of the Geranium Essential Oil, Palmarosa Essential Oil and Phenylethyl Alcohol in Essential Oil Using ATR-FTIR Spectroscopy Combined with Chemometrics.

Foods. 2021-8-11

[5]
Oregano and Thyme Essential Oils Encapsulated in Chitosan Nanoparticles as Effective Antimicrobial Agents against Foodborne Pathogens.

Molecules. 2021-7-2

[6]
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometric analysis for detection and quantification of adulteration in lavender and citronella essential oils.

Phytochem Anal. 2021-11

[7]
Rapid Screening of Essential Oil and L-Menthol in Essential Oil by ATR-FTIR Spectroscopy Coupled with Multivariate Analyses.

Foods. 2021-1-20

[8]
Biomolecular and bioanalytical applications of infrared spectroscopy - A review.

Anal Chim Acta. 2020-10-9

[9]
Characterization of Gamma-Irradiated L. (Rosemary).

Turk J Pharm Sci. 2019-3

[10]
The application of essential oils as a next-generation of pesticides: recent developments and future perspectives.

Z Naturforsch C J Biosci. 2020-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索