Suppr超能文献

在城市环境中进行局地气候区划:数据源和分类器的最优组合。

Mapping Local Climate Zones in the Urban Environment: The Optimal Combination of Data Source and Classifier.

机构信息

College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.

Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an 710127, China.

出版信息

Sensors (Basel). 2022 Aug 25;22(17):6407. doi: 10.3390/s22176407.

Abstract

The novel concept of local climate zones (LCZs) provides a consistent classification framework for studies of the urban thermal environment. However, the development of urban climate science is severely hampered by the lack of high-resolution data to map LCZs. Using Gaofen-6 and Sentinel-1/2 as data sources, this study designed four schemes using convolutional neural network (CNN) and random forest (RF) classifiers, respectively, to demonstrate the potential of high-resolution images in LCZ mapping and evaluate the optimal combination of different data sources and classifiers. The results showed that the combination of GF-6 and CNN (S3) was considered the best LCZ classification scheme for urban areas, with OA and kappa coefficients of 85.9% and 0.842, respectively. The accuracy of urban building categories is above 80%, and the F1 score for each category is the highest, except for LCZ1 and LCZ5, where there is a small amount of confusion. The Sentinel-1/2-based RF classifier (S2) was second only to S3 and superior to the combination of GF-6 and random forest (S1), with OA and kappa coefficients of 64.4% and 0.612, respectively. The Sentinel-1/2 and CNN (S4) combination has the worst classification result, with an OA of only 39.9%. The LCZ classification map based on S3 shows that the urban building categories in Xi'an are mainly distributed within the second ring, while heavy industrial buildings have started to appear in the third ring. The urban periphery is mainly vegetated and bare land. In conclusion, CNN has the best application effect in the LCZ mapping task of high-resolution remote sensing images. In contrast, the random forest algorithm has better robustness in the band-abundant Sentinel data.

摘要

局部气候区(LCZ)的新概念为城市热环境研究提供了一致的分类框架。然而,由于缺乏高分辨率数据来绘制 LCZ,城市气候科学的发展受到严重阻碍。本研究使用高分六号(Gaofen-6)和哨兵-1/2 作为数据源,分别设计了四个基于卷积神经网络(CNN)和随机森林(RF)分类器的方案,以展示高分辨率图像在 LCZ 制图中的潜力,并评估不同数据源和分类器的最佳组合。结果表明,GF-6 和 CNN 的组合(S3)被认为是城市地区 LCZ 分类的最佳方案,OA 和kappa 系数分别为 85.9%和 0.842。城市建筑类别的准确率均在 80%以上,除 LCZ1 和 LCZ5 外,每个类别的 F1 分数均为最高,这两个类别的准确率稍低,存在一定程度的混淆。基于哨兵-1/2 的 RF 分类器(S2)仅次于 S3,优于 GF-6 和随机森林的组合(S1),OA 和 kappa 系数分别为 64.4%和 0.612。Sentinel-1/2 和 CNN 的组合(S4)分类效果最差,OA 仅为 39.9%。基于 S3 的 LCZ 分类图显示,西安市的城市建筑类别主要分布在二环以内,而重工业建筑已开始出现在三环以内。城市周边主要是植被和裸地。总之,CNN 在高分辨率遥感图像的 LCZ 制图任务中具有最佳的应用效果。相比之下,随机森林算法在多波段的 Sentinel 数据中具有更好的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c72/9460207/7d0700847671/sensors-22-06407-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验