School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg, Sweden.
Sensors (Basel). 2022 Aug 25;22(17):6423. doi: 10.3390/s22176423.
Non-contact vital sign detection technology has brought a more comfortable experience to the detection process of human respiratory and heartbeat signals. Ensemble empirical mode decomposition (EEMD) is a noise-assisted adaptive data analysis method which can be used to decompose the echo data of frequency modulated continuous wave (FMCW) radar and extract the heartbeat and respiratory signals. The key of EEMD is to add Gaussian white noise into the signal to overcome the mode aliasing problem caused by original empirical mode decomposition (EMD). Based on the characteristics of clutter and noise distribution in public places, this paper proposed a static clutter filtering method for eliminating ambient clutter and an improved EEMD method based on stable alpha noise distribution. The symmetrical alpha stable distribution is used to replace Gaussian distribution, and the improved EEMD is used for the separation of respiratory and heartbeat signals. The experimental results show that the static clutter filtering technology can effectively filter the surrounding static clutter and highlight the periodic moving targets. Within the detection range of 0.5 m~2.5 m, the improved EEMD method can better distinguish the heartbeat, respiration, and their harmonics, and accurately estimate the heart rate.
非接触式生命体征检测技术为人体呼吸和心跳信号的检测过程带来了更加舒适的体验。集合经验模态分解(EEMD)是一种噪声辅助自适应数据分析方法,可用于分解调频连续波(FMCW)雷达的回波数据,并提取心跳和呼吸信号。EEMD 的关键是将高斯白噪声添加到信号中,以克服原始经验模态分解(EMD)引起的模式混叠问题。基于公共场所杂波和噪声分布的特点,本文提出了一种静态杂波滤波方法,用于消除环境杂波,并提出了一种基于稳定 α 噪声分布的改进 EEMD 方法。使用对称 α 稳定分布代替高斯分布,改进的 EEMD 用于呼吸和心跳信号的分离。实验结果表明,静态杂波滤波技术可以有效地滤除周围的静态杂波,并突出周期性运动目标。在 0.5m~2.5m 的检测范围内,改进的 EEMD 方法可以更好地区分心跳、呼吸及其谐波,并准确估计心率。