Suppr超能文献

基于车辆振动信号的道路识别及采用 ISA 算法的舒适车速策略制定。

Road Recognition Based on Vehicle Vibration Signal and Comfortable Speed Strategy Formulation Using ISA Algorithm.

机构信息

Medical Information Center, Jinling Hospital, Nanjing 210002, China.

Department of Vehicle Engineering, Nanjing Forestry University, Nanjing 210037, China.

出版信息

Sensors (Basel). 2022 Sep 3;22(17):6682. doi: 10.3390/s22176682.

Abstract

When a vehicle is being driven, it is excited by the road roughness and generates its own vibration. In order to improve the vehicle's riding comfort and the physical-mental health of passengers in the vehicle, this paper proposes a formulation method for a comfortable speed strategy and the technical route of its application. According to international standard ISO 2631-1, the relationship between the weighted root-mean-square acceleration value and comfortable vehicle speed is analyzed. The simulation test platform of the road roughness signal and vehicle vibration signal is built by using the filtering white noise method and the second Lagrange equation through Matlab/Simulink. Combined with the simulation platform, this paper extracts seven characteristics with statistical properties from the time-domain signal and obtains 500 sample data. Random forest (RF), extreme learning machine (ELM), and radial basis function neural network (RBF-NN) are applied to identify roads. Two comfortable speed strategy formulation methods based on the improved simulated annealing (ISA) algorithm are proposed and compared according to the solution effect of each grade of comfortable speed. The results show that the simulated signals of each grade road roughness are accurate. Road recognition can be effectively carried out using the statistical characteristics of vehicle vibration acceleration signals. ELM has high recognition accuracy and fast execution speed. The ISA-II algorithm has a low solution error of comfortable speed and a low computation time. The comfortable speed of the research vehicle on different road grades showed a great difference.

摘要

当车辆行驶时,它会受到道路粗糙度的激励并产生自身的振动。为了提高车辆的乘坐舒适性和车内乘客的身心健康,本文提出了一种舒适速度策略的制定方法及其应用的技术路线。根据国际标准 ISO 2631-1,分析了加权均方根加速度值与舒适车速之间的关系。利用滤波白噪声法和 Matlab/Simulink 中的第二拉格朗日方程,建立了道路粗糙度信号和车辆振动信号的仿真测试平台。结合仿真平台,本文从时域信号中提取出具有统计特性的七个特征,并获得了 500 个样本数据。应用随机森林(RF)、极限学习机(ELM)和径向基函数神经网络(RBF-NN)对道路进行识别。根据每个舒适速度等级的求解效果,提出并比较了两种基于改进模拟退火(ISA)算法的舒适速度策略制定方法。结果表明,各等级道路粗糙度的仿真信号准确。可以利用车辆振动加速度信号的统计特征有效地进行道路识别。ELM 具有较高的识别准确率和较快的执行速度。ISA-II 算法的舒适速度求解误差较低,计算时间较短。研究车辆在不同道路等级下的舒适速度有很大差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07e0/9460285/d098c7b84445/sensors-22-06682-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验