Suppr超能文献

精确控制二氧化硅纳米粒子的表面粗糙度以增强其功能和应用。

Precisely controlling the surface roughness of silica nanoparticles for enhanced functionalities and applications.

机构信息

Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, PR China.

Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, PR China.

出版信息

J Colloid Interface Sci. 2023 Jan;629(Pt A):173-181. doi: 10.1016/j.jcis.2022.08.159. Epub 2022 Aug 30.

Abstract

HYPOTHESIS

Colloids with rough topography demonstrate more complex interactions and tremendous potential in industrial applications. However, relevant studies suffer from a range of challenges, including cumbersome synthesis, complex characterization, and very limited functionalities. A comprehensive study of rough nanoparticles can not only broaden our understanding of rough colloids, but also help to avoid some of their detrimental impacts in real life (e.g., clogging and pumping failures in slurry processing).

EXPERIMENTS

A facile route to precisely control the surface roughness of silica nanoparticles and a highly efficient method to characterize the surface roughness were developed respectively. The fabricated particles can be applied for the immobilization of metal nanostructures; their cytotoxic effects and the capability to be used as a drug-delivery vehicle were also evaluated.

FINDINGS

Modifying the addition time of precursors (i.e., TEOS and MPTMS) can precisely control the surface roughness of silica nanoparticles. The developed characterization method based on TEM observations allows statistical analyses on a large number of particles, and therefore features very reasonable accuracy. These rough particles behave like microporous materials, where the loading strategy is closely related to their surface roughness. Medium rough particles are promising carriers of metal nanostructures, while the roughest ones are excellent candidate for doxorubicin delivery to cancer cells.

摘要

假设

具有粗糙形貌的胶体在工业应用中表现出更复杂的相互作用和巨大的潜力。然而,相关研究存在一系列挑战,包括繁琐的合成、复杂的表征和非常有限的功能。对粗糙纳米粒子的综合研究不仅可以拓宽我们对粗糙胶体的理解,还有助于避免它们在现实生活中的一些不利影响(例如,在浆体加工中堵塞和泵送故障)。

实验

分别开发了一种精确控制二氧化硅纳米粒子表面粗糙度的简单途径和一种高效的表面粗糙度表征方法。所制备的颗粒可用于金属纳米结构的固定化;还评估了它们的细胞毒性作用和用作药物输送载体的能力。

结果

通过改变前驱体(即 TEOS 和 MPTMS)的添加时间,可以精确控制二氧化硅纳米粒子的表面粗糙度。基于 TEM 观察开发的表征方法允许对大量粒子进行统计分析,因此具有非常合理的准确性。这些粗糙粒子的行为类似于微孔材料,其负载策略与表面粗糙度密切相关。中等粗糙的粒子是金属纳米结构的理想载体,而最粗糙的粒子则是将阿霉素递送到癌细胞的优秀候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验