Suppr超能文献

医院获得性菌血症和真菌血症:比较 267 家医院的两种风险调整模型的预测因素和基准比较可行性评估。

Hospital-onset bacteremia and fungemia: An evaluation of predictors and feasibility of benchmarking comparing two risk-adjusted models among 267 hospitals.

机构信息

Becton, Dickinson and Company, Franklin Lakes, New Jersey.

Centers for Disease Control and Prevention, Atlanta, Georgia.

出版信息

Infect Control Hosp Epidemiol. 2022 Oct;43(10):1317-1325. doi: 10.1017/ice.2022.211. Epub 2022 Sep 9.

Abstract

OBJECTIVES

To evaluate the prevalence of hospital-onset bacteremia and fungemia (HOB), identify hospital-level predictors, and to evaluate the feasibility of an HOB metric.

METHODS

We analyzed 9,202,650 admissions from 267 hospitals during 2015-2020. An HOB event was defined as the first positive blood-culture pathogen on day 3 of admission or later. We used the generalized linear model method via negative binomial regression to identify variables and risk markers for HOB. Standardized infection ratios (SIRs) were calculated based on 2 risk-adjusted models: a simple model using descriptive variables and a complex model using descriptive variables plus additional measures of blood-culture testing practices. Performance of each model was compared against the unadjusted rate of HOB.

RESULTS

Overall median rate of HOB per 100 admissions was 0.124 (interquartile range, 0.00-0.22). Facility-level predictors included bed size, sex, ICU admissions, community-onset (CO) blood culture testing intensity, and hospital-onset (HO) testing intensity, and prevalence (all < .001). In the complex model, CO bacteremia prevalence, HO testing intensity, and HO testing prevalence were the predictors most associated with HOB. The complex model demonstrated better model performance; 55% of hospitals that ranked in the highest quartile based on their raw rate shifted to a lower quartile when the SIR from the complex model was applied.

CONCLUSIONS

Hospital descriptors, aggregate patient characteristics, community bacteremia and/or fungemia burden, and clinical blood-culture testing practices influence rates of HOB. Benchmarking an HOB metric is feasible and should endeavor to include both facility and clinical variables.

摘要

目的

评估医院获得性菌血症和真菌血症(HOB)的患病率,确定医院层面的预测因素,并评估 HOB 指标的可行性。

方法

我们分析了 2015 年至 2020 年间 267 家医院的 9202650 例住院患者。HOB 事件定义为入院第 3 天或之后首次阳性血培养病原体。我们使用广义线性模型方法通过负二项回归来确定 HOB 的变量和风险标志物。根据 2 个风险调整模型计算标准化感染比(SIR):使用描述性变量的简单模型和使用描述性变量加额外血液培养检测实践措施的复杂模型。比较了每个模型的性能与未经调整的 HOB 率。

结果

总体中位数 HOB 率为每 100 例住院患者 0.124(四分位距,0.00-0.22)。医院层面的预测因素包括床位大小、性别、重症监护病房入院、社区获得性(CO)血培养检测强度以及医院获得性(HO)检测强度和患病率(均<0.001)。在复杂模型中,CO 菌血症患病率、HO 检测强度和 HO 检测患病率是与 HOB 最相关的预测因素。复杂模型显示出更好的模型性能;当应用复杂模型的 SIR 时,55%基于原始率排名最高的四分之一的医院转移到较低的四分之一。

结论

医院特征、综合患者特征、社区菌血症和/或真菌血症负担以及临床血液培养检测实践影响 HOB 率。HOB 指标的基准测试是可行的,应努力包括设施和临床变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca6c/9588439/714b23b5609f/S0899823X22002112_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验