Bunjes Ole, Hedman Daniel, Rittmeier Alexandra, Paul Lucas A, Siewert Inke, Ding Feng, Wenderoth Martin
IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.
Sci Adv. 2022 Sep 9;8(36):eabq7776. doi: 10.1126/sciadv.abq7776.
Nanoconfinement of catalytically active molecules is a powerful strategy to control their chemical activity; however, the atomic-scale mechanisms are challenging to identify. In the present study, the site-specific reactivity of a model rhenium catalyst is studied on the subnanometer scale for complexes confined within quasi-one-dimensional molecular chains on the Ag(001) surface by scanning tunneling microscopy. Injection of tunneling electrons causes ligand dissociation in single molecules. Unexpectedly, while half of the complexes show only the dissociation, the confined molecules show also the reverse reaction. On the basis of density functional theory calculations, this drastic difference can be attributed to the limited space in confinement. That is, the split-off ligand adsorbs closer to the molecule and the dissociation causes less structural disruption. Both of these facilitate the reverse reaction. We demonstrate formation and disruption of single chemical bonds of nanoconfined molecules with potential application in molecular data storage.
催化活性分子的纳米限域是控制其化学活性的一种有效策略;然而,原子尺度的机制难以确定。在本研究中,通过扫描隧道显微镜在亚纳米尺度上研究了一种铼模型催化剂对限制在Ag(001)表面准一维分子链内的配合物的位点特异性反应性。注入隧道电子会导致单分子中的配体解离。出乎意料的是,虽然一半的配合物仅显示解离,但受限分子也显示出逆反应。基于密度泛函理论计算,这种显著差异可归因于限域空间有限。也就是说,解离出的配体吸附得更靠近分子,并且解离引起的结构破坏较小。这两者都促进了逆反应。我们展示了纳米限域分子单化学键的形成和断裂,其在分子数据存储中有潜在应用。