Suppr超能文献

机器学习在预测中国不同潜在社会经济和气候情景下轮胎磨损颗粒排放中的应用,同时考虑轮胎微塑料的情况。

Machine learning application in forecasting tire wear particles emission in China under different potential socioeconomic and climate scenarios with tire microplastics context.

机构信息

College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.

College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.

出版信息

J Hazard Mater. 2023 Jan 5;441:129878. doi: 10.1016/j.jhazmat.2022.129878. Epub 2022 Sep 1.

Abstract

Little information is available on different contribution of TMPs from tire wear particles (TWPs), recycled tire crumbs (RTCs) and tire repair-polished Debris (TRDs) in the environment at national scale and their potential tendency. In this study, the TWPs were predicted using machine learning method of CNN (Convolutional Neural Networks) algorithms under different potential socioeconomic and climate scenarios based on the estimation of TMPs in China. Results showed that TWPs emission exhibited the most important part of TMPs, followed by RTCs and TRDs in China. The three mentioned tire microplastics largely distributed in Chinese coastal provinces. After machine learning applied in CNN using the dataset of estimated emission of TWPs from 2008 to 2018, the express delivery volume and education funding at the current increased rate would not have significant impacts on TWPs emissions; Additionally, TWPs emissions were also sensitive to changes of economic and transportation development; Low temperature conditions would further promote TWPs emissions. Accordingly, the rational development of logistics and green economy, the equilibrium improvement of education quality, and the increase of public traffic with new energy would be helpful to mitigate TWPs emissions. The obtained findings can enhance the understanding TMPs emission at particular scale and their corresponding precise management.

摘要

关于轮胎磨损颗粒(TMPs)、回收轮胎碎片(RTCs)和轮胎修补抛光碎片(TRDs)在国家范围内的环境中不同贡献及其潜在趋势的信息很少。在这项研究中,根据中国 TMPs 的估计,使用卷积神经网络(CNN)算法的机器学习方法预测了 TMPs 在不同潜在社会经济和气候情景下的排放情况。结果表明,在中国,TMPs 的排放呈现出最重要的部分,其次是 RTCs 和 TRDs。这三种轮胎微塑料主要分布在中国沿海省份。在使用 2008 年至 2018 年 TMPs 排放量的估计数据集对 CNN 进行机器学习后,快递业务量和当前按增长率增加的教育资金不会对 TMPs 的排放产生重大影响;此外,TMPs 的排放也对经济和交通发展的变化敏感;低温条件会进一步促进 TMPs 的排放。因此,合理发展物流和绿色经济,平衡提高教育质量,增加新能源公共交通,将有助于减少 TMPs 的排放。所获得的研究结果可以增强对特定规模 TMPs 排放及其相应精确管理的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验