Chen Ying-Jiun, Hanke Jan-Philipp, Hoffmann Markus, Bihlmayer Gustav, Mokrousov Yuriy, Blügel Stefan, Schneider Claus M, Tusche Christian
Peter Grünberg Institut, Forschungszentrum Jülich, 52425, Jülich, Germany.
Fakultät für Physik, Universität Duisburg-Essen, 47057, Duisburg, Germany.
Nat Commun. 2022 Sep 9;13(1):5309. doi: 10.1038/s41467-022-32948-z.
The discovery of topological states of matter has led to a revolution in materials research. When external or intrinsic parameters break symmetries, global properties of topological materials change drastically. A paramount example is the emergence of Weyl nodes under broken inversion symmetry. While a rich variety of non-trivial quantum phases could in principle also originate from broken time-reversal symmetry, realizing systems that combine magnetism with complex topological properties is remarkably elusive. Here, we demonstrate that giant open Fermi arcs are created at the surface of ultrathin hybrid magnets where the Fermi-surface topology is substantially modified by hybridization with a heavy-metal substrate. The interplay between magnetism and topology allows us to control the shape and the location of the Fermi arcs by tuning the magnetization direction. The hybridization points in the Fermi surface can be attributed to a non-trivial mixed topology and induce hot-spots in the Berry curvature, dominating spin and charge transport as well as magneto-electric coupling effects.
物质拓扑态的发现引发了材料研究的一场革命。当外部或内在参数打破对称性时,拓扑材料的全局性质会发生急剧变化。一个最重要的例子是在反演对称性被打破时外尔点的出现。虽然原则上各种各样的非平凡量子相也可能源于时间反演对称性的打破,但实现将磁性与复杂拓扑性质相结合的系统却非常困难。在这里,我们证明了在超薄混合磁体的表面会形成巨大的开放费米弧,其中费米面拓扑通过与重金属衬底的杂化而被显著改变。磁性与拓扑之间的相互作用使我们能够通过调整磁化方向来控制费米弧的形状和位置。费米面中的杂化点可归因于非平凡的混合拓扑,并在贝里曲率中诱导热点,主导自旋和电荷输运以及磁电耦合效应。