Suppr超能文献

用于具有查询驱动型动态视觉传感器的注视跟踪的统一人类眼球模型。

Unity Human Eye Model for Gaze Tracking with a Query-Driven Dynamic Vision Sensor.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2194-2198. doi: 10.1109/EMBC48229.2022.9871193.

Abstract

Objective measurement of gaze pattern and eye movement during untethered activity has important applications for neuroscience research and neurological disease detection. Current commercial eye-tracking tools rely on desk-top devices with infrared emitters and conventional frame-based cameras. Although wearable options do exist, the large power-consumption from their conventional cameras limit true long-term mobile usage. The query-driven Dynamic Vision Sensor (qDVS) is a neuromorphic camera which dramatically reduces power consumption by outputting only intensity-change threshold events, as opposed to full frames of intensity data. However, such hardware has not yet been implemented for on-body eye-tracking, but the feasibility can be demonstrated using a mathematical simulator to evaluate the eye-tracking ca-pabilities of the qDVS under controlled conditions. Specifically, a framework utilizing a realistic human eye model in the 3D graphics engine, Unity, is presented to enable the controlled and direct comparison of image-based gaze tracking methods. Eye-tracking based on qDVS frames was compared against two different conventional frame eye-tracking methods - the traditional ellipse pupil-fitting algorithm and a deep learning neural network inference model. Gaze accuracy from qDVS frames achieved an average of 93.2% for movement along the primary horizontal axis (pitch angle) and 93.1 % for movement along the primary vertical axis (yaw angle) under 4 different illumination conditions, demonstrating the feasibility for using qDVS hardware cameras for such applications. The quantitative framework for the direct comparison of eye tracking algorithms presented here is made open-source and can be extended to include other eye parameters, such as pupil dilation, reflection, motion artifact, and more.

摘要

在无束缚活动期间对注视模式和眼球运动进行客观测量,对神经科学研究和神经疾病检测具有重要的应用。当前的商业眼动追踪工具依赖于带有红外发射器和传统基于帧的摄像机的台式设备。虽然确实存在可穿戴选项,但它们传统摄像机的高功耗限制了真正的长期移动使用。查询驱动的动态视觉传感器(qDVS)是一种神经形态相机,通过仅输出强度变化阈值事件而不是强度数据的全帧来显著降低功耗。然而,这种硬件尚未在身体上的眼动追踪中实现,但可以使用数学模拟器来演示其可行性,以在受控条件下评估 qDVS 的眼动追踪能力。具体来说,提出了一种利用 3D 图形引擎 Unity 中的逼真人眼模型的框架,以实现基于图像的注视追踪方法的受控和直接比较。基于 qDVS 帧的眼动追踪与两种不同的传统基于帧的眼动追踪方法进行了比较 - 传统的椭圆瞳孔拟合算法和深度学习神经网络推理模型。在 4 种不同的照明条件下,qDVS 帧的注视精度在主要水平轴(俯仰角)上的平均达到 93.2%,在主要垂直轴(偏航角)上的平均达到 93.1%,证明了使用 qDVS 硬件相机进行此类应用的可行性。这里提出的用于直接比较眼动追踪算法的定量框架是开源的,可以扩展到包括其他眼参数,例如瞳孔扩张、反射、运动伪影等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验