Suppr超能文献

基于卷积神经网络的心音分类与不平衡补偿加权损失函数。

CNN-Based Heart Sound Classification with an Imbalance-Compensating Weighted Loss Function.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4934-4937. doi: 10.1109/EMBC48229.2022.9871904.

Abstract

Heart sound auscultation is an effective method for early-stage diagnosis of heart disease. The application of deep neural networks is gaining increasing attention in automated heart sound classification. This paper proposes deep Convolutional Neural Networks (CNNs) to classify normal/abnormal heart sounds, which takes two-dimensional Mel-scale features as input, including Mel frequency cepstral coefficients (MFCCs) and the Log Mel spectrum. We employ two weighted loss functions during the training to mitigate the class imbalance issue. The model was developed on the public PhysioNet/Computing in Cardiology Challenge (CinC) 2016 heart sound database. On the considered test set, the proposed model with Log Mel spectrum as features achieves an Unweighted Average Recall (UAR) of 89.6%, with sensitivity and specificity being 89.5% and 89.7% respectively. This work proposes a CNN-based model to enable automated heart sound classification, which can provide auxiliary assistance for heart auscultation and has the potential to screen for heart pathologies in clinical applications at a relatively low cost.

摘要

心音听诊是心脏病早期诊断的有效方法。在自动心音分类中,深度神经网络的应用越来越受到关注。本文提出了深度卷积神经网络(CNN)来分类正常/异常心音,该网络以二维梅尔标度特征作为输入,包括梅尔频率倒谱系数(MFCC)和对数梅尔频谱。在训练过程中,我们采用了两种加权损失函数来减轻类不平衡问题。该模型是在公共 PhysioNet/计算心脏病学挑战赛(CinC)2016 心音数据库上开发的。在所考虑的测试集中,使用对数梅尔频谱作为特征的提出的模型的未加权平均召回率(UAR)为 89.6%,灵敏度和特异性分别为 89.5%和 89.7%。这项工作提出了一种基于 CNN 的模型来实现自动心音分类,它可以为心音听诊提供辅助,并有可能以相对较低的成本在临床应用中筛查心脏病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验