Suppr超能文献

使用稀疏表示和随机森林分类器消除 iEEG 中的伪 HFOs。

Elimination of pseudo-HFOs in iEEG using sparse representation and Random Forest classifier.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4888-4891. doi: 10.1109/EMBC48229.2022.9871447.

Abstract

High-Frequency Oscillation (HFO) is a promising biomarker of the epileptogenic zone. However, sharp artifacts might easily pass the conventional HFO detectors as real HFOs and reduce the seizure onset zone (SOZ) localization. We hypothesize that, unlike pseudo-HFOs, which originates from artifacts with sharp changes or arbitrary waveform characteristic, real HFOs could be represented by a limited number of oscillatory waveforms. Accordingly, to distinguish true ones from pseudo-HFOs, we established a new classification method based on sparse representation of candidate events that passed an initial detector with high sensitivity but low specificity. Specifically, using the Orthogonal Matching Pursuit (OMP) and a redundant Gabor dictionary, each event was represented sparsely in an iterative fashion. The approximation error was estimated over 30 iterations which were concatenated to form a 30-dimensional feature vector and fed to a random forest classifier. Based on the selected dictionary elements, our method can further classify HFOs into Ripples (R) and Fast Ripples (FR). In this scheme, two experts visually inspected 2075 events captured in iEEG recordings from 5 different subjects and labeled them as true-HFO or Pseudo-HFO. We reached 90.22% classification accuracy in labeled events and a 21.16% SOZ localization improvement compared to the conventional amplitude-threshold-based detector. Our sparse representation framework also classified the detected HFOs into R and FR subcategories. We reached 91.24% SOZ accuracy with the detected [Formula: see text] events. Clinical Relevance---This sparse representation framework establishes a new approach to distinguish real from pseudo-HFOs in prolonged iEEG recordings. It also provides reliable SOZ identification without the selection of artifact-free segments.

摘要

高频振荡(HFO)是致痫区有希望的生物标志物。然而,尖锐的伪迹很容易通过传统的 HFO 检测器,被误认为是真正的 HFO,从而降低发作起始区(SOZ)的定位精度。我们假设,与起源于具有急剧变化或任意波形特征的伪迹的伪 HFO 不同,真正的 HFO 可以由有限数量的振荡波形表示。因此,为了将真正的 HFO 与伪 HFO 区分开来,我们建立了一种新的分类方法,该方法基于通过具有高灵敏度但低特异性的初始检测器的候选事件的稀疏表示。具体来说,使用正交匹配追踪(OMP)和冗余的 Gabor 字典,每个事件以迭代的方式稀疏表示。在 30 次迭代中估计逼近误差,将这些迭代结果连接起来形成一个 30 维的特征向量,并将其输入到随机森林分类器中。根据所选字典元素,我们的方法可以进一步将 HFO 分为锐波(R)和快锐波(FR)。在该方案中,两位专家对来自 5 位不同患者的 iEEG 记录中捕获的 2075 个事件进行了视觉检查,并将其标记为真正的 HFO 或伪 HFO。与传统的基于振幅阈值的检测器相比,我们在标记事件中达到了 90.22%的分类准确率,并将 SOZ 定位精度提高了 21.16%。我们的稀疏表示框架还将检测到的 HFO 分为 R 和 FR 子类别。我们使用检测到的[Formula: see text]个事件达到了 91.24%的 SOZ 准确率。临床相关性---这种稀疏表示框架为区分延长的 iEEG 记录中的真实 HFO 和伪 HFO 建立了一种新方法。它还提供了可靠的 SOZ 识别,而无需选择无伪迹的片段。

相似文献

本文引用的文献

4
Localization of the Epileptogenic Zone Using High Frequency Oscillations.利用高频振荡定位致痫区
Front Neurol. 2019 Feb 12;10:94. doi: 10.3389/fneur.2019.00094. eCollection 2019.
7
Epilepsy biomarkers.癫痫生物标志物。
Epilepsia. 2013 Aug;54 Suppl 4(0 4):61-9. doi: 10.1111/epi.12299.
8
Recording and analysis techniques for high-frequency oscillations.高频震荡的记录和分析技术。
Prog Neurobiol. 2012 Sep;98(3):265-78. doi: 10.1016/j.pneurobio.2012.02.006. Epub 2012 Mar 7.
10
Epidemiology of the epilepsies.癫痫的流行病学
J Neurol Neurosurg Psychiatry. 1996 Nov;61(5):433-43. doi: 10.1136/jnnp.61.5.433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验