Pu Jiang, Ou Hao, Yamada Tomoyuki, Wada Naoki, Naito Hibiki, Ogura Hiroto, Endo Takahiko, Liu Zheng, Irisawa Toshifumi, Yanagi Kazuhiro, Nakanishi Yusuke, Gao Yanlin, Maruyama Mina, Okada Susumu, Shinokita Keisuke, Matsuda Kazunari, Miyata Yasumitsu, Takenobu Taishi
Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan.
Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
Adv Mater. 2022 Nov;34(44):e2203250. doi: 10.1002/adma.202203250. Epub 2022 Oct 6.
The diverse series of transition metal dichalcogenide (TMDC) materials has been employed in various optoelectronic applications, such as photodetectors, light-emitting diodes, and lasers. Typically, the detection or emission range of optoelectronic devices is unique to the bandgap of the active material. Therefore, to improve the capability of these devices, extensive efforts have been devoted to tune the bandgap, such as gating, strain, and dielectric engineering. However, the controllability of these methods is severely limited (typically ≈0.1 eV). In contrast, alloying TMDCs is an effective approach that yields a composition-dependent bandgap and enables light emissions over a wide range. In this study, a color-tunable light-emitting device using compositionally graded TMDC alloys is fabricated. The monolayer WS /WSe alloy grown by chemical vapor deposition shows a spatial gradient in the light-emission energy, which varies from 2.1 to 1.7 eV. This alloy is incorporated in an electrolyte-based light-emitting device structure that can tune the recombination zone laterally. Thus, a continuous and reversible color-tunable light-emitting device is successfully fabricated by controlling the light-emitting positions. The results provide a new approach for exploring monolayer semiconductor-based broadband optical applications.
多种过渡金属二硫属化物(TMDC)材料已被应用于各种光电器件中,如光电探测器、发光二极管和激光器。通常,光电器件的探测或发射范围取决于活性材料的带隙。因此,为了提高这些器件的性能,人们致力于通过诸如栅极调控、应变和介电工程等方法来调节带隙。然而,这些方法的可控性受到严重限制(通常约为0.1 eV)。相比之下,TMDC合金化是一种有效的方法,它能产生与成分相关的带隙,并实现宽范围的光发射。在本研究中,制备了一种使用成分渐变TMDC合金的颜色可调发光器件。通过化学气相沉积生长的单层WS /WSe合金在发光能量上呈现出空间梯度,范围从2.1 eV到1.7 eV。这种合金被集成到基于电解质的发光器件结构中,该结构可以横向调节复合区域。因此,通过控制发光位置成功制备了一种连续且可逆的颜色可调发光器件。这些结果为探索基于单层半导体的宽带光学应用提供了一种新方法。