Suppr超能文献

机器学习在妇科肿瘤中的应用:一项批判性综述。

Machine learning applications in gynecological cancer: A critical review.

机构信息

Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vasilissis Sophias, 11528 Athens, Greece.

Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vasilissis Sophias, 11528 Athens, Greece.

出版信息

Crit Rev Oncol Hematol. 2022 Nov;179:103808. doi: 10.1016/j.critrevonc.2022.103808. Epub 2022 Sep 7.

Abstract

Machine Learning (ML) represents a computer science capable of generating predictive models, by exposure to raw, training data, without being rigidly programmed. Over the last few years, ML has gained attention within the field of oncology, with considerable strides in both diagnostic, predictive, and prognostic spectrum of malignancies, but also as a catalyst of cancer research. In this review, we discuss the state of ML applications on gynecologic oncology and systematically address major technical and ethical concerns, with respect to their real-world medical practice translation. Undoubtedly, advances in ML will enable the analysis of large, rather complex, datasets for improved, cost-effective, and efficient clinical decisions.

摘要

机器学习(ML)是一门计算机科学,能够通过对原始训练数据进行处理来生成预测模型,而无需进行严格的编程。在过去的几年中,ML 在肿瘤学领域引起了关注,在诊断、预测和恶性肿瘤预后方面都取得了相当大的进展,但它也是癌症研究的催化剂。在这篇综述中,我们讨论了 ML 在妇科肿瘤学中的应用现状,并系统地讨论了与将其实际应用于医学实践相关的主要技术和伦理问题。毫无疑问,ML 的进步将能够分析更大、更复杂的数据集,以做出更好、更具成本效益和更有效的临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验