Chair of Forest Growth and Yield Science, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh.
Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
Sci Total Environ. 2022 Dec 20;853:158662. doi: 10.1016/j.scitotenv.2022.158662. Epub 2022 Sep 8.
Mangroves continue to be threatened across their range by a mix of anthropogenic and climate change-related stress. Climate change-induced salinity is likely to alter the structure and functions of highly productive mangrove systems. However, we still lack a comprehensive understanding of how rising salinity affects forest structure and functions because of the limited availability of mangrove field data. Therefore, based on extensive spatiotemporal mangrove data covering a large-scale salinity gradient, collected from the world's largest single tract mangrove ecosystem - the Bangladesh Sundarbans, we, aimed to examine (QI) how rising salinity influences forest structure (e.g., stand density, diversity, leaf area index (LAI), etc.), functions (e.g., carbon stocks, forest growth), nutrients availability, and functional traits (e.g., specific leaf area, wood density). We also wanted to know (QII) how forest functions interact (direct vs. indirect) with biotic (i.e., stand structure, species richness, etc.) and abiotic factors (salinity, nutrients, light availability, etc.). We also asked (QIII) whether the functional variable decreases disproportionately with salinity and applied the power-law (i.e., Y = a X) to the salinity and functional variable relationships. In this study, we found that rises in salinity significantly impede forest growth and produce less productive ecosystems dominated by dwarf species while reducing stand structural properties (i.e., tree height, basal area, dominant tree height, LAI), soil carbon (organic and root carbon), and macronutrient availability in the soil (e.g., NH4+, P, and K). Besides, species-specific leaf area (related to resource acquisition) also decreased with salinity, whereas wood density (related to resource conservation) increased. We observed a declining abundance of the salt-intolerant climax species (Heritiera fomes) and dominance of the salt-tolerant species (Excoecaria agallocha, Ceriops decandra) in the high saline areas. In the case of biotic and abiotic factors, salinity and salinity-driven gap fraction (high transmission of light) had a strong negative impact on functional variables, while nutrients and LAI had a positive impact. In addition, the power-law explained the consistent decline of functional variables with salinity. Our study disentangles the negative effects of salinity on site quality in the Sundarbans mangrove ecosystem, and we recognize that nutrient availability and LAI are likely to buffer the less salt-tolerant species to maintain the ability to sequester carbon with sea-level rise. These novel findings advance our understanding of how a single stressor-salinity-can shape mangrove structure, functions, and productivity and offer decision makers a much-needed scientific basis for developing pragmatic ecosystem management and conservation plans in highly stressed coastal ecosystems across the globe.
红树林在其分布范围内继续受到人为和与气候变化相关的压力的威胁。气候变化引起的盐度升高可能会改变高生产力红树林系统的结构和功能。然而,由于红树林实地数据的有限可用性,我们仍然缺乏对盐分升高如何影响森林结构和功能的全面了解。因此,本研究基于广泛的红树林时空数据,涵盖了世界上最大的单一红树林生态系统——孟加拉国孙德尔本斯的大规模盐度梯度,旨在检查(QI)盐分升高如何影响森林结构(例如,林分密度、多样性、叶面积指数(LAI)等)、功能(例如,碳储量、森林生长)、养分供应和功能特性(例如,比叶面积、木材密度)。我们还想知道(QII)森林功能如何与生物因素(即林分结构、物种丰富度等)和非生物因素(盐度、养分、光照可用性等)相互作用(直接与间接)。我们还询问了(QIII)功能变量是否与盐度不成比例地减少,并将幂律(即 Y = a X)应用于盐度和功能变量关系。在这项研究中,我们发现盐度的升高显著阻碍了森林的生长,导致生产力较低的生态系统由矮化物种主导,同时降低了林分结构特性(即树木高度、基部面积、优势树种高度、LAI)、土壤碳(有机碳和根碳)和土壤中大量养分的供应(例如 NH4+、P 和 K)。此外,物种特有的比叶面积(与资源获取有关)也随盐度的升高而降低,而木材密度(与资源保护有关)升高。我们观察到盐度耐受的顶极物种(Heritiera fomes)的丰度下降,而盐度耐受的物种(Excoecaria agallocha、Ceriops decandra)在高盐区占主导地位。就生物和非生物因素而言,盐度和盐度驱动的间隙分数(光的高透射率)对功能变量有强烈的负面影响,而养分和 LAI 有积极的影响。此外,幂律解释了功能变量随盐度的一致下降。本研究揭示了盐度对孙德尔本斯红树林生态系统中地点质量的负面影响,我们认识到养分供应和 LAI 可能缓冲较不耐盐的物种,以维持在海平面上升时固碳的能力。这些新发现增进了我们对单一胁迫因素(盐度)如何塑造红树林结构、功能和生产力的理解,并为决策者提供了急需的科学依据,以制定在全球高度受压的沿海生态系统中进行务实的生态系统管理和保护规划。