Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany.
Magn Reson Med. 2023 Jan;89(1):469-476. doi: 10.1002/mrm.29434. Epub 2022 Sep 11.
This study aims to find a relation between the number of channels and the computational burden for specific absorption rate (SAR) calculation using virtual observation point-based SAR compression.
Eleven different arrays of rectangular loops covering a cylinder of fixed size around the head of an anatomically correct voxel model were simulated. The resulting Q-matrices were compressed with 2 different compression algorithms, with the overestimation fixed to a certain fraction of worst-case SAR, median SAR, or minimum SAR. The latter 2 were calculated from 1e6 normalized random excitation vectors.
The number of virtual observation points increased with the number of channels to the power of 2.3-3.7, depending on the compression algorithm when holding the relative error fixed. Together with the increase in the size of the Q-matrices (and therefore the size of the virtual observation points), the total increase in computational burden with the number of channels was to the power of 4.3-5.7.
The computational cost emphasizes the need to use the best possible compression algorithms when moving to high channel counts.
本研究旨在通过基于虚拟观察点的 SAR 压缩,寻找特定吸收率 (SAR) 计算中通道数量与计算负担之间的关系。
模拟了覆盖头部周围固定大小圆柱的 11 种不同的矩形环阵列。使用 2 种不同的压缩算法对生成的 Q 矩阵进行压缩,将高估固定为最坏情况 SAR、中位数 SAR 或最小 SAR 的一定分数。后两者是从 1e6 个归一化随机激励向量计算得出的。
当保持相对误差固定时,虚拟观察点的数量随通道数量的增加而增加,幂为 2.3-3.7,这取决于压缩算法。随着 Q 矩阵大小(因此虚拟观察点的大小)的增加,计算负担随通道数量的增加呈幂次为 4.3-5.7 的增加。
计算成本强调在向高通道计数移动时需要使用尽可能好的压缩算法。