Kotsina Nikoleta, Brahms Christian, Jackson Sebastian L, Travers John C, Townsend Dave
Institute of Photonics & Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
Institute of Chemical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK.
Chem Sci. 2022 Aug 8;13(33):9586-9594. doi: 10.1039/d2sc02185d. eCollection 2022 Aug 24.
We exploit the phenomenon of resonant dispersive wave (RDW) emission in gas-filled hollow capillary fibres (HCFs) to realize time-resolved photoelectron imaging (TRPEI) measurements with an extremely short temporal resolution. By integrating the output end of an HCF directly into a vacuum chamber assembly we demonstrate two-colour deep ultraviolet (DUV)-infrared instrument response functions of just 10 and 11 fs at central pump wavelengths of 250 and 280 nm, respectively. This result represents an advance in the current state of the art for ultrafast photoelectron spectroscopy. We also present an initial TRPEI measurement investigating the excited-state photochemical dynamics operating in the -methylpyrrolidine molecule. Given the substantial interest in generating extremely short and highly tuneable DUV pulses for many advanced spectroscopic applications, we anticipate our first demonstration will stimulate wider uptake of the novel RDW-based approach for studying ultrafast photochemistry - particularly given the relatively compact and straightforward nature of the HCF setup.
我们利用充气空心毛细管光纤(HCF)中的共振色散波(RDW)发射现象,以实现具有极短时间分辨率的时间分辨光电子成像(TRPEI)测量。通过将HCF的输出端直接集成到真空腔组件中,我们分别在250和280 nm的中心泵浦波长下展示了仅为10和11 fs的双色深紫外(DUV)-红外仪器响应函数。这一结果代表了超快光电子能谱当前技术水平的一项进步。我们还展示了首次TRPEI测量,研究了在N-甲基吡咯烷分子中运行的激发态光化学动力学。鉴于在许多先进光谱应用中对产生极短且高度可调谐的DUV脉冲有着浓厚兴趣,我们预计我们的首次展示将刺激基于RDW的新型方法在超快光化学研究中的更广泛应用——特别是考虑到HCF装置相对紧凑和简单的特性。