Suppr超能文献

一种用于使用平面基准进行稳健姿态估计的新型编码元件。

A novel encoding element for robust pose estimation using planar fiducials.

作者信息

Rijlaarsdam David D W, Zwick Martin, Kuiper J M Hans

机构信息

Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands.

European Space Research and Technology Centre (ESTEC), European Space Agency, Noordwijk, Netherlands.

出版信息

Front Robot AI. 2022 Aug 24;9:838128. doi: 10.3389/frobt.2022.838128. eCollection 2022.

Abstract

Pose estimation in robotics is often achieved using images from known and purposefully applied markers or fiducials taken by a monocular camera. This low-cost system architecture can provide accurate and precise pose estimation measurements. However, to prevent the restriction of robotic movement and occlusions of features, the fiducial markers are often planar. While numerous planar fiducials exist, the performance of these markers suffers from pose ambiguities and loss of precision under frontal observations. These issues are most prevalent in systems with less-than-ideal specifications such as low-resolution detectors, low field of view optics, far-range measurements etc. To mitigate these issues, encoding markers have been proposed in literature. These markers encode an extra dimension of information in the signal between marker and sensor, thus increasing the robustness of the pose solution. In this work, we provide a survey of these encoding markers and show that existing solutions are complex, require optical elements and are not scalable. Therefore, we present a novel encoding element based on the compound eye of insects such as the Mantis. The encoding element encodes a virtual point in space in its signal without the use of optical elements. The features provided by the encoding element are mathematically equivalent to those of a protrusion. Where existing encoding fiducials require custom software, the projected virtual point can be used with standard pose solving algorithms. The encoding element is simple, can be produced using a consumer 3D printer and is fully scalable. The end-to-end implementation of the encoding element proposed in this work significantly increases the pose estimation performance of existing planar fiducials, enabling robust pose estimation for robotic systems.

摘要

机器人技术中的姿态估计通常通过单目相机拍摄的已知且有目的地应用的标记或基准点的图像来实现。这种低成本的系统架构可以提供准确而精确的姿态估计测量。然而,为了防止机器人运动受限和特征遮挡,基准标记通常是平面的。虽然存在许多平面基准标记,但这些标记在正面观察下的性能会受到姿态模糊和精度损失的影响。这些问题在规格不太理想的系统中最为普遍,例如低分辨率探测器、低视场光学器件、远距离测量等。为了缓解这些问题,文献中提出了编码标记。这些标记在标记与传感器之间的信号中编码了一个额外的信息维度,从而提高了姿态求解的鲁棒性。在这项工作中,我们对这些编码标记进行了综述,并表明现有的解决方案很复杂,需要光学元件且不可扩展。因此,我们提出了一种基于螳螂等昆虫复眼的新型编码元件。该编码元件在其信号中对空间中的一个虚拟点进行编码,而无需使用光学元件。编码元件提供的特征在数学上等同于一个突出物的特征。现有的编码基准标记需要定制软件,而投影的虚拟点可以与标准的姿态求解算法一起使用。该编码元件很简单,可以使用消费级3D打印机生产,并且完全可扩展。这项工作中提出的编码元件的端到端实现显著提高了现有平面基准标记的姿态估计性能,为机器人系统实现了鲁棒的姿态估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9549/9449645/1925d7b53950/frobt-09-838128-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验