Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona, Barcelona, Spain.
Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Madrid, Spain.
J Affect Disord. 2022 Dec 1;318:246-254. doi: 10.1016/j.jad.2022.09.010. Epub 2022 Sep 10.
Late-life depression (LLD) is characterized by cognitive and social impairments. Determining neurobiological alterations in connectivity in LLD by means of fMRI may lead to a better understanding of the neural basis underlying this disorder and more precise diagnostic markers. The primary objective of this paper is to identify a structural model that best explains the dynamic effective connectivity (EC) of the default mode network (DMN) in LLD patients compared to controls.
Twenty-seven patients and 29 healthy controls underwent resting-state fMRI during a period of eight minutes. In both groups, jackknife correlation matrices were generated with six ROIs of the DMN that constitute the posterior DMN (pDMN). The different correlation matrices were used as input to estimate each structural equation model (SEM) for each subject in both groups incorporating dynamic effects.
The results show that the proposed LLD diagnosis algorithm achieves perfect accuracy in classifying LLD patients and controls. This differentiation is based on three aspects: the importance of ROIs 4 and 6, which seem to be the most distinctive among the subnetworks; the shape that the specific connections adopt in their networks, or in other words, the directed connections that are established among the ROIs in the pDMN for each group; and the number of dynamic effects that seem to be greater throughout the six ROIs studied [t = 54.346; df = 54; p < .001; 95 % CI difference = 5.486-5.906].
The sample size was moderate, and the participants continued their current medications.
The network models that we developed describe a pattern of dynamic activation in the pDMN that may be considered a possible biomarker for LLD, which may allow early diagnosis of this disorder.
老年期抑郁症(LLD)的特点是认知和社会功能受损。通过功能磁共振成像(fMRI)确定 LLD 连接中的神经生物学改变,可能有助于更好地理解该疾病的神经基础,并提供更精确的诊断标志物。本文的主要目的是确定一个结构模型,该模型可以更好地解释与对照组相比,LLD 患者默认模式网络(DMN)的动态有效连接(EC)。
27 名患者和 29 名健康对照者在 8 分钟的时间内进行了静息态 fMRI 检查。在两组中,均使用 DMN 的六个 ROI 生成 jackknife 相关矩阵,这些 ROI 构成了后 DMN(pDMN)。使用不同的相关矩阵作为输入,以估计每组受试者的每个结构方程模型(SEM),并纳入动态效应。
结果表明,所提出的 LLD 诊断算法在区分 LLD 患者和对照组方面达到了完美的准确性。这种区分基于三个方面:ROI 4 和 6 的重要性,它们似乎是子网络中最具特色的;特定连接在其网络中采用的形状,或者换句话说,在每个组的 pDMN 中,ROI 之间建立的有向连接;以及似乎在研究的六个 ROI 中更为普遍的动态效应数量[t=54.346;df=54;p<.001;95%置信区间差异=5.486-5.906]。
样本量适中,参与者继续服用当前药物。
我们开发的网络模型描述了 pDMN 中动态激活的模式,这可能被认为是 LLD 的一个潜在生物标志物,这可能有助于该疾病的早期诊断。