Suppr超能文献

基于机器学习的群体药动学模型改善了中国成人肝移植受者他克莫司谷浓度预测。

Population Pharmacokinetic Modeling Combined With Machine Learning Approach Improved Tacrolimus Trough Concentration Prediction in Chinese Adult Liver Transplant Recipients.

机构信息

Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P.R. China.

Liver Transplant Centre, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.

出版信息

J Clin Pharmacol. 2023 Mar;63(3):314-325. doi: 10.1002/jcph.2156. Epub 2022 Dec 29.

Abstract

This study aimed to develop and evaluate a population pharmacokinetic (PPK) combined machine learning approach to predict tacrolimus trough concentrations for Chinese adult liver transplant recipients in the early posttransplant period. Tacrolimus trough concentrations were retrospectively collected from routine monitoring records of liver transplant recipients and divided into the training data set (1287 concentrations in 145 recipients) and the test data set (296 concentrations in 36 recipients). A PPK model was first established using NONMEM. Then a machine learning model of Xgboost was adapted to fit the estimated individual pharmacokinetic parameters obtained from the PPK model with Bayesian forecasting. The performance of the final PPK model and Xgboost model was compared in the test data set. In the final PPK model, tacrolimus daily dose, postoperative days, hematocrit, aspartate aminotransferase, and concomitant voriconazole, were identified to significantly influence the clearance. The postoperative days along with hematocrit significantly influence the volume of distribution. In the Xgboost model, the first 5 predictors for predicting the clearance were concomitant with voriconazole, sex, single nucleotide polymorphisms of CYP3A41G and CYP3A53 in recipients, and tacrolimus daily dose, for the volume of distribution were postoperative days, age, weight, total bilirubin and graft : recipient weight ratio. In the test data set, the Xgboost model showed the minimum median prediction error of tacrolimus concentrations, less than the PPK model with or without Bayesian forecasting. In conclusion, a PPK combined machine learning approach could improve the prediction of tacrolimus concentrations for Chinese adult liver transplant recipients in the early posttransplant period.

摘要

本研究旨在开发和评估一种群体药代动力学(PPK)结合机器学习方法,以预测中国成年肝移植受者移植后早期的他克莫司谷浓度。从肝移植受者的常规监测记录中回顾性收集他克莫司谷浓度,并将其分为训练数据集(145 名受者中的 1287 个浓度)和测试数据集(36 名受者中的 296 个浓度)。首先使用 NONMEM 建立 PPK 模型。然后,适应 Xgboost 机器学习模型以拟合从 PPK 模型获得的估计个体药代动力学参数,并用贝叶斯预测进行拟合。在测试数据集中比较最终 PPK 模型和 Xgboost 模型的性能。在最终的 PPK 模型中,他克莫司日剂量、术后天数、红细胞压积、天冬氨酸转氨酶和伴随的伏立康唑被确定为显著影响清除率。术后天数和红细胞压积显著影响分布容积。在 Xgboost 模型中,预测清除率的前 5 个预测因子是与伏立康唑、性别、受者 CYP3A41G 和 CYP3A53 的单核苷酸多态性以及他克莫司日剂量相关,而对于分布容积,是术后天数、年龄、体重、总胆红素和移植物:受体体重比。在测试数据集中,Xgboost 模型显示他克莫司浓度的最小中位数预测误差小于 PPK 模型,无论是带有还是不带有贝叶斯预测。总之,PPK 结合机器学习方法可以提高中国成年肝移植受者移植后早期他克莫司浓度的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验