Department of Infectious Disease, Children's Hospital of Nanjing Medical University, Nanjing 210008, P. R. China.
Department of Emergency/Critical Care Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008, P. R. China.
J Bioinform Comput Biol. 2022 Oct;20(5):2250020. doi: 10.1142/S0219720022500202. Epub 2022 Sep 12.
The peroxisome proliferator-activated receptor-[Formula: see text] (PPAR[Formula: see text]) is a member of PPAR nuclear receptor family, and its antagonists have been widely used to treat pediatric metabolic disorders. Traditional type-1 and type-2 PPAR[Formula: see text] antagonists are all small-molecule compounds that have been developed to target the ligand-binding site (LBS) of PPAR[Formula: see text], which is not overlapped with the coactivator-interacting site (CIS) of PPAR[Formula: see text]. In this study, we described the rational design of type-3 peptidic antagonists that can directly disrupt PPAR[Formula: see text]-coactivator interaction by physically competing with coactivator proteins for the CIS site. In the procedure, seven reported PPAR[Formula: see text] coactivator proteins were collected and eight 11-mer helical peptide segments that contain the core PPAR[Formula: see text]-binding LXXLL motif were identified in these coactivators, which, however, possessed a large flexibility and intrinsic disorder when splitting from coactivator protein context, and thus would incur a considerable entropy penalty (i.e. indirect readout) upon binding to PPAR[Formula: see text] CIS site. By carefully examining the natively folded conformation of these helical peptides in their parent protein context and in their interaction mode with the CIS site, we rationally designed a hydrocarbon bridge across the solvent-exposed, ([Formula: see text], [Formula: see text]+ 4) residues to constrain their helical conformation, thus largely minimizing the unfavorable indirect readout effect but having only a moderate influence on favorable enthalpy contribution (i.e. direct readout) upon PPAR[Formula: see text]-peptide binding. The computational findings were further substantiated by fluorescence competition assays.
过氧化物酶体增殖物激活受体-[公式:见文本](PPAR[公式:见文本])是 PPAR 核受体家族的成员,其拮抗剂已广泛用于治疗儿科代谢紊乱。传统的 1 型和 2 型 PPAR[公式:见文本]拮抗剂都是小分子化合物,旨在针对 PPAR[公式:见文本]的配体结合位点(LBS),而不与 PPAR[公式:见文本]的共激活剂相互作用位点(CIS)重叠。在这项研究中,我们描述了通过物理竞争共激活剂蛋白与 CIS 位点来直接破坏 PPAR[公式:见文本]-共激活剂相互作用的 3 型肽拮抗剂的合理设计。在该过程中,收集了七种报道的 PPAR[公式:见文本]共激活蛋白,并在这些共激活蛋白中鉴定了八个包含核心 PPAR[公式:见文本]结合 LXXLL 基序的 11 肽段,然而,当从共激活蛋白结构中分裂时,这些肽段具有很大的灵活性和固有无序性,因此在与 PPAR[公式:见文本] CIS 位点结合时会产生相当大的熵罚(即间接读出)。通过仔细检查这些螺旋肽在其亲本蛋白结构中和与 CIS 位点相互作用模式中的天然折叠构象,我们合理地设计了一个横跨溶剂暴露的碳氢桥([公式:见文本],[公式:见文本]+4)残基,以约束它们的螺旋构象,从而在很大程度上最小化不利的间接读出效应,但对 PPAR[公式:见文本]-肽结合的有利焓贡献(即直接读出)只有适度影响。计算结果进一步通过荧光竞争测定得到证实。