Infection Immunology Research Group, Helmholtz Centre for Infection Researchgrid.7490.a, Braunschweig, Germany.
Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
mBio. 2022 Oct 26;13(5):e0231622. doi: 10.1128/mbio.02316-22. Epub 2022 Sep 14.
Staphylococcus aureus is a leading cause of difficult-to-treat infections. The capacity of S. aureus to survive and persist within phagocytic cells is an important factor contributing to therapy failures and infection recurrence. Therefore, interfering with S. aureus intracellular persistence is key to treatment success. In this study, we used a S. aureus strain carrying the reporter mKikumeGR that enables the monitoring of the metabolic status of intracellular bacteria to achieve a better understanding of the molecular mechanisms facilitating S. aureus survival and persistence within macrophages. We found that shortly after bacteria internalization, a large fraction of macrophages harbored mainly S. aureus with high metabolic activity. This population decreased gradually over time with the concomitant increase of a macrophage subpopulation harboring S. aureus with low metabolic activity, which prevailed at later times. A dual RNA-seq analysis performed in each macrophage subpopulation showed that the host transcriptional response was similar between both subpopulations. However, intracellular S. aureus exhibited disparate gene expression profiles depending on its metabolic state. Whereas S. aureus with high metabolic activity exhibited a greater expression of genes involved in protein synthesis and proliferation, bacteria with low metabolic activity displayed a higher expression of oxidative stress response-related genes, silenced genes involved in energy-consuming processes, and exhibited a dormant-like state. Consequently, we propose that reducing metabolic activity and entering into a dormant-like state constitute a survival strategy used by S. aureus to overcome the adverse environment encountered within macrophages and to persist in the intracellular niche. The capacity of Staphylococcus aureus to survive and persist within phagocytic cells has been associated with antibiotic treatment failure and recurrent infections. Here, we investigated the molecular mechanisms leading to S. aureus persistence within macrophages using a reporter system that enables to distinguish between intracellular bacteria with high and low metabolic activity in combinstion with a dual RNA-seq approach. We found that with the progression of infection, intracellular S. aureus transitions from a high metabolic state to a low metabolic dormant-like state by turning off major energy-consuming processes while remaining viable. This process seems to be driven by the level of stress encountered in the intracellular niche. Our study indicates that effective therapies by which to treat S. aureus infections should be able to target not only high metabolic bacteria but also intracellular dormant-like S. aureus.
金黄色葡萄球菌是一种导致治疗困难的感染的主要原因。金黄色葡萄球菌在吞噬细胞内生存和持续存在的能力是导致治疗失败和感染复发的一个重要因素。因此,干扰金黄色葡萄球菌的细胞内持续存在是治疗成功的关键。在这项研究中,我们使用了一种携带报告基因 mKikumeGR 的金黄色葡萄球菌菌株,该报告基因能够监测细胞内细菌的代谢状态,以更好地了解促进金黄色葡萄球菌在巨噬细胞内生存和持续存在的分子机制。我们发现,在细菌内化后不久,大量巨噬细胞主要含有代谢活性高的金黄色葡萄球菌。随着时间的推移,这个群体逐渐减少,同时伴有代谢活性低的金黄色葡萄球菌的巨噬细胞亚群增加,这种情况在后期更为普遍。在每个巨噬细胞亚群中进行的双重 RNA-seq 分析表明,两个亚群的宿主转录反应相似。然而,根据其代谢状态,细胞内金黄色葡萄球菌表现出不同的基因表达谱。具有高代谢活性的金黄色葡萄球菌表现出更高水平的参与蛋白质合成和增殖的基因表达,而代谢活性低的细菌则表现出更高水平的与氧化应激反应相关的基因表达,沉默了与能量消耗过程相关的基因,并表现出休眠样状态。因此,我们提出,降低代谢活性并进入休眠样状态是金黄色葡萄球菌用来克服巨噬细胞内遇到的不利环境并在细胞内环境中持续存在的一种生存策略。金黄色葡萄球菌在吞噬细胞内的生存和持续存在能力与抗生素治疗失败和反复感染有关。在这里,我们使用一种报告系统研究了导致金黄色葡萄球菌在巨噬细胞内持续存在的分子机制,该报告系统能够区分具有高代谢活性和低代谢活性的细胞内细菌,并结合双重 RNA-seq 方法。我们发现,随着感染的进展,细胞内金黄色葡萄球菌通过关闭主要的能量消耗过程从高代谢状态转变为低代谢休眠样状态,同时保持存活。这个过程似乎是由细胞内环境中遇到的应激水平驱动的。我们的研究表明,有效的治疗金黄色葡萄球菌感染的方法不仅应该能够针对高代谢细菌,还应该能够针对细胞内休眠样金黄色葡萄球菌。