Suppr超能文献

全球金融指标与二十国集团(G20)股票市场之间波动溢出效应的复杂网络分析

Complex network analysis of volatility spillovers between global financial indicators and G20 stock markets.

作者信息

Korkusuz Burak, McMillan David G, Kambouroudis Dimos

机构信息

Division of Accounting and Finance, University of Stirling, Stirling, FK9 4LA UK.

出版信息

Empir Econ. 2023;64(4):1517-1537. doi: 10.1007/s00181-022-02290-w. Epub 2022 Sep 10.

Abstract

This paper analyses the dynamic transmission mechanism of volatility spillovers between key global financial indicators and G20 stock markets. To examine volatility spillover relations, we combine a bivariate GARCH-BEKK model with complex network theory. Specifically, we construct a volatility network of international financial markets utilising the spatial connectedness of spillovers (consisting of nodes and edges). The findings show that spillover relations between global variables and G20 markets vary significantly across five identified sub-periods. Notably, networks are much denser in crisis periods compared to non-crisis periods. In comparing two crisis periods, Global Financial Crisis (2008) and COVID-19 Crisis (2020) periods, the network statistics suggest that volatility spillovers in the latter period are more transitive and intense than the former. This suggests that financial volatility spreads more rapidly and directly through key financial indicators to the G20 stock markets. For example, oil and bonds are the largest volatility senders, while the markets of Saudi Arabia, Russia, South Africa, and Brazil are the main volatility receivers. In the former crisis, the source of financial volatility concentrates primarily in the USA, Australia, Canada, and Saudi Arabia, which are the largest volatility senders and receivers. China emerges as generally the least sensitive market to external volatility.

摘要

本文分析了全球主要金融指标与二十国集团(G20)股票市场之间波动溢出的动态传导机制。为检验波动溢出关系,我们将二元广义自回归条件异方差-贝克-克恩克(GARCH-BEKK)模型与复杂网络理论相结合。具体而言,我们利用溢出的空间关联性(由节点和边组成)构建了国际金融市场的波动网络。研究结果表明,全球变量与G20市场之间的溢出关系在五个确定的子时期内存在显著差异。值得注意的是,与非危机时期相比,危机时期的网络密度要大得多。在比较两个危机时期,即全球金融危机(2008年)和新冠疫情危机(2020年)时期时,网络统计数据表明,后一时期的波动溢出比前一时期更具传递性且更为强烈。这表明金融波动通过关键金融指标更快、更直接地传导至G20股票市场。例如,石油和债券是最大的波动输出者,而沙特阿拉伯、俄罗斯、南非和巴西的市场是主要的波动接收者。在前一场危机中,金融波动的源头主要集中在美国、澳大利亚、加拿大和沙特阿拉伯,这些国家是最大的波动输出者和接收者。总体而言,中国是对外部波动最不敏感的市场。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/235d/9463059/990b6e3796de/181_2022_2290_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验