School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China.
Eur Rev Med Pharmacol Sci. 2022 Sep;26(17):6040-6049. doi: 10.26355/eurrev_202209_29618.
Traditional blood glucose testing methods have several disadvantages, such as high pain and poor acquisition continuity. In response to these shortcomings, we propose a multi-parameter fusion non-invasive blood glucose detection method that combines machine learning and photoplethysmography (PPG) signal feature parameter analysis.
This method uses the signal validity check process based on the correlation operation to test and calculate PPG data. It, then, respectively applies the bootstrap aggregation algorithm and the random forests algorithm to establish two non-invasive blood glucose detection models that comprehensively predict blood glucose data.
Experimental comparative analysis showed that the accuracy of the detection model based on the random forests algorithm is superior. The correlation coefficient of the obtained blood glucose prediction set is 0.972, the mean square error is 0.257, and the relative error is less than ± 20%.
Relative error in blood glucose prediction meets the national standards in China. Meanwhile, the results of the Clarke Error Grid Analysis indicate that the non-invasive blood glucose testing method proposed in this study meets clinical accuracy requirements.
传统的血糖检测方法存在一些缺点,如疼痛高和采集连续性差。针对这些缺点,我们提出了一种结合机器学习和光电容积脉搏波(PPG)信号特征参数分析的多参数融合无创血糖检测方法。
该方法使用基于相关运算的信号有效性检查过程来测试和计算 PPG 数据。然后,分别应用自举聚合算法和随机森林算法来建立两个综合预测血糖数据的无创血糖检测模型。
实验对比分析表明,基于随机森林算法的检测模型具有更高的准确性。得到的血糖预测集的相关系数为 0.972,均方误差为 0.257,相对误差小于±20%。
血糖预测的相对误差符合中国国家标准。同时,Clarke 误差网格分析的结果表明,本研究提出的无创血糖检测方法符合临床准确性要求。