Suppr超能文献

木质素生物合成的转录激活用于异源生产依托泊苷苷元。

Transcriptional Reactivation of Lignin Biosynthesis for the Heterologous Production of Etoposide Aglycone in .

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.

Department of Biology, Stanford University, Stanford, California 94305, United States.

出版信息

ACS Synth Biol. 2022 Oct 21;11(10):3379-3387. doi: 10.1021/acssynbio.2c00289. Epub 2022 Sep 19.

Abstract

is a valuable plant chassis for heterologous production of medicinal plant natural products. This host is well suited for the processing of organelle-localized plant enzymes, and the conservation of the primary metabolism across the plant kingdom often provides required plant-specific precursor molecules that feed a given pathway. Despite this commonality in metabolism, limited precursor supply and/or competing host pathways can interfere with yields of heterologous products. Here, we use transient transcriptional reprogramming of endogenous metabolism to drastically improve flux through the etoposide pathway derived from the medicinal plant spp. Specifically, coexpression of a single lignin-associated transcription factor, MYB85, with pathway genes results in unprecedented levels of heterologous product accumulation in leaves: 1 mg/g dry weight (DW) of the etoposide aglycone, 35 mg/g DW (-)-deoxypodophyllotoxin, and 3.5 mg/g DW (-)-epipodophyllotoxin─up to two orders of magnitude above previously reported biosynthetic yields for the etoposide aglycone and eight times higher than what is observed for (-)-deoxypodophyllotoxin in the native medicinal plant. Unexpectedly, transient activation of lignin metabolism by transcription factor overexpression also reduces the production of undesired side products that likely result from competing metabolism. Our work demonstrates that synthetic activation of lignin biosynthesis in leaf tissue is an effective strategy for optimizing the production of medicinal compounds derived from phenylpropanoid precursors in the plant chassis . Furthermore, our results highlight the engineering value of MYB85, an early switch in lignin biosynthesis, for on-demand modulation of monolignol flux and support the role of MYB46 as a master regulator of lignin polymer deposition.

摘要

是异源生产药用植物天然产物的有价值的植物底盘。该宿主非常适合处理定位于细胞器的植物酶,并且整个植物界中经常保持的初级代谢物提供了所需的植物特异性前体分子,这些分子为特定途径提供了养分。尽管代谢途径具有共性,但有限的前体供应和/或竞争的宿主途径可能会干扰异源产物的产量。在这里,我们使用内源性代谢的瞬时转录重编程来极大地提高来源于药用植物 的依托泊苷途径的通量。具体来说,与途径基因共表达单个木质素相关转录因子 MYB85 可导致 叶片中异源产物的积累达到前所未有的水平:依托泊苷苷元为 1mg/g 干重(DW),(-)-去氧鬼臼毒素为 35mg/g DW,(-)-表鬼臼毒素为 3.5mg/g DW,比以前报道的依托泊苷苷元生物合成产量高出两个数量级,比在天然药用植物中观察到的(-)-去氧鬼臼毒素高出 8 倍。出乎意料的是,转录因子过表达瞬时激活木质素代谢也减少了可能源自竞争代谢的不需要的副产物的产生。我们的工作表明,在叶片组织中合成激活木质素生物合成是优化来源于苯丙素前体的药用化合物生产的有效策略。此外,我们的结果突出了 MYB85 的工程价值,MYB85 是木质素生物合成的早期开关,可用于按需调节木质醇通量,并支持 MYB46 作为木质素聚合物沉积主调节剂的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72fc/9594330/ac52f15b7e74/sb2c00289_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验