Suppr超能文献

剂量/暴露-反应建模在剂量滴定试验中:克服滴定悖论。

Dose/exposure-response modeling in dose titration trials: Overcoming the titration paradox.

机构信息

Pharmacometrics, Novo Nordisk A/S, Søborg, Denmark.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 Dec;11(12):1592-1603. doi: 10.1002/psp4.12863. Epub 2022 Sep 20.

Abstract

Response-based dose individualization or dose titration is a powerful approach to achieve precision dosing. Yet, titration as an individualization strategy is underused in drug development and therefore not reflected in labeling, possibly partly because of the data analysis challenges associated with assessing dose/exposure-response under dose titration, where there is an inherent risk of selection bias because poor responders would get high doses, whereas good responders would get low doses. In a recent article, this issue of selection bias was termed the "titration paradox." In this study, we demonstrate by means of simulation that the titration paradox may be overcome if longitudinal data from dose titration trials is analyzed using a population approach that accounts for the fact that dose/exposure-response relationships differ between individuals. We show that with an appropriate sample size and missing data missing at random, stepwise dose/exposure-response modeling based on data obtained under dose titration is not by definition subject to model selection bias or bias in parameter estimates. We also illustrate the challenges of graphical exploration of data obtained under dose titration and discuss the use of model diagnostic tools with such data. Our study shows that if, at every timepoint in the course of a trial, there is a clear causal relationship between the response and the dose/exposure level, and a population approach is used, it will in many cases be possible to develop, estimate, and appropriately qualify a dose/exposure-response model also for data obtained under dose titration, thus overcoming the titration paradox.

摘要

基于反应的剂量个体化或剂量滴定是实现精准给药的有力方法。然而,滴定作为个体化策略在药物开发中未得到充分应用,因此未反映在标签中,部分原因可能是与评估剂量/暴露-反应关系相关的数据分析挑战,在剂量滴定中存在选择偏倚的固有风险,因为反应不佳的患者会接受高剂量,而反应良好的患者会接受低剂量。在最近的一篇文章中,将这种选择偏倚问题称为“滴定悖论”。在这项研究中,我们通过模拟表明,如果使用考虑到个体之间剂量/暴露-反应关系存在差异的群体方法分析来自剂量滴定试验的纵向数据,则可以克服滴定悖论。我们表明,在适当的样本量和随机缺失数据的情况下,基于剂量滴定下获得的数据进行逐步剂量/暴露-反应建模,不会受到模型选择偏倚或参数估计偏倚的影响。我们还说明了探索剂量滴定下获得的数据的图形探索的挑战,并讨论了在这种情况下使用模型诊断工具的问题。我们的研究表明,如果在试验过程中的每个时间点,反应与剂量/暴露水平之间存在明确的因果关系,并且使用群体方法,那么在许多情况下,即使是在剂量滴定下获得的数据,也可以开发、估计和适当确定剂量/暴露-反应模型,从而克服滴定悖论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c8/9755917/ad582e9ad515/PSP4-11-1592-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验