Suppr超能文献

用于预测慢性冠状动脉综合征患者应力超声心动图生存情况的机器学习算法

Machine Learning Algorithms for Prediction of Survival by Stress Echocardiography in Chronic Coronary Syndromes.

作者信息

Cortigiani Lauro, Azzolina Danila, Ciampi Quirino, Lorenzoni Giulia, Gaibazzi Nicola, Rigo Fausto, Gherardi Sonia, Bovenzi Francesco, Gregori Dario, Picano Eugenio

机构信息

Ospedale San Luca, Azienda Usl Toscana Nord Ovest, 55100 Lucca, Italy.

Biostatistics, Epidemiology and Public Health Unit, Padova University, 35126 Padova, Italy.

出版信息

J Pers Med. 2022 Sep 16;12(9):1523. doi: 10.3390/jpm12091523.

Abstract

Stress echocardiography (SE) is based on regional wall motion abnormalities and coronary flow velocity reserve (CFVR). Their independent prognostic capabilities could be better studied with a machine learning (ML) approach. The study aims to assess the SE outcome data by conducting an analysis with an ML approach. We included 6881 prospectively recruited and retrospectively analyzed patients with suspected (n = 4279) or known (n = 2602) coronary artery disease submitted to clinically driven dipyridamole SE. The outcome measure was all-cause death. A random forest survival model was implemented to model the survival function according to the patient’s characteristics; 1002 patients recruited by a single, independent center formed the external validation cohort. During a median follow-up of 3.4 years (IQR 1.6−7.5), 814 (12%) patients died. The mortality risk was higher for patients aged >60 years, with a resting ejection fraction < 60%, resting WMSI, positive stress-rest WMSI scores, and CFVR < 3.The C-index performance was 0.79 in the internal and 0.81 in the external validation data set. Survival functions for individual patients were easily obtained with an open access web app. An ML approach can be fruitfully applied to outcome data obtained with SE. Survival showed a constantly increasing relationship with a CFVR < 3.0 and stress-rest wall motion score index > Since processing is largely automated, this approach can be easily scaled to larger and more comprehensive data sets to further refine stratification, guide therapy and be ultimately adopted as an open-source online decision tool.

摘要

负荷超声心动图(SE)基于局部室壁运动异常和冠状动脉血流储备(CFVR)。利用机器学习(ML)方法可以更好地研究它们各自的预后能力。本研究旨在通过ML方法进行分析来评估SE的结果数据。我们纳入了6881例经前瞻性招募并进行回顾性分析的疑似(n = 4279)或已知(n = 2602)冠状动脉疾病患者,这些患者接受了临床驱动的双嘧达莫SE检查。结局指标为全因死亡。实施了随机森林生存模型,根据患者特征对生存函数进行建模;由一个独立中心招募的1002例患者组成了外部验证队列。在中位随访3.4年(四分位间距1.6 - 7.5年)期间,814例(12%)患者死亡。年龄>60岁、静息射血分数<60%、静息室壁运动记分指数(WMSI)、负荷-静息WMSI评分阳性以及CFVR<3的患者死亡风险更高。内部验证数据集的C指数表现为0.79,外部验证数据集为0.81。通过一个开放获取的网络应用程序可以轻松获得个体患者的生存函数。ML方法可以有效地应用于SE获得的结果数据。当CFVR<3.0且负荷-静息室壁运动评分指数>时,生存率呈现持续增加的关系。由于处理过程在很大程度上是自动化的,这种方法可以轻松扩展到更大、更全面的数据集,以进一步优化分层、指导治疗,并最终作为一种开源在线决策工具被采用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2dd/9504503/c79827d6bdaa/jpm-12-01523-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验