Gallegos Miguel, Barrena-Espés Daniel, Guevara-Vela José Manuel, Rocha-Rinza Tomás, Pendás Ángel Martín
Department of Analytical and Physical Chemistry, University of Oviedo, 33006 Oviedo, Spain.
Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior, Ciudad Universitaria, Delegación Coyoacán, Mexico City C.P. 04510, Mexico.
Molecules. 2022 Sep 16;27(18):6039. doi: 10.3390/molecules27186039.
The somewhat elusive concept of aromaticity plays an undeniable role in the chemical narrative, often being considered the principal cause of the unusual properties and stability exhibited by certain π skeletons. More recently, the concept of aromaticity has also been utilised to explain the modulation of the strength of non-covalent interactions (NCIs), such as hydrogen bonding (HB), paving the way towards the in silico prediction and design of tailor-made interacting systems. In this work, we try to shed light on this area by exploiting real space techniques, such as the Quantum Theory of Atoms in Molecules (QTAIM), the Interacting Quantum Atoms (IQA) approaches along with the electron delocalisation indicators Aromatic Fluctuation (FLU) and Multicenter (MCI) indices. The QTAIM and IQA methods have been proven capable of providing an unbiased and rigorous picture of NCIs in a wide variety of scenarios, whereas the FLU and MCI descriptors have been successfully exploited in the study of diverse aromatic and antiaromatic systems. We used a collection of simple archetypal examples of aromatic, non-aromatic and antiaromatic moieties within organic molecules to examine the changes in π delocalisation and aromaticity induced by the Aromaticity and Antiaromaticity Modulated Hydrogen Bonds (AMHB). We observed fundamental differences in the behaviour of systems containing the HB acceptor within and outside the ring, e.g., a destabilisation of the rings in the former as opposed to a stabilisation of the latter upon the formation of the corresponding molecular clusters. The results of this work provide a physically sound basis to rationalise the strengthening and weakening of AMHBs with respect to suitable non-cyclic non-aromatic references. We also found significant differences in the chemical bonding scenarios of aromatic and antiaromatic systems in the formation of AMHB. Altogether, our investigation provide novel, valuable insights about the complex mutual influence between hydrogen bonds and π systems.
芳香性这一略显难以捉摸的概念在化学领域中发挥着不可否认的作用,常被视为某些π骨架所展现出的异常性质和稳定性的主要原因。最近,芳香性概念还被用于解释非共价相互作用(NCI)强度的调制,如氢键(HB),为计算机预测和设计定制的相互作用体系铺平了道路。在这项工作中,我们试图通过利用实空间技术来阐明这一领域,例如分子中的原子量子理论(QTAIM)、相互作用量子原子(IQA)方法以及电子离域指标芳香波动(FLU)和多中心(MCI)指数。QTAIM和IQA方法已被证明能够在各种情况下提供关于NCI的无偏且严格的描述,而FLU和MCI描述符已成功应用于多种芳香和反芳香体系的研究。我们使用了有机分子中芳香、非芳香和反芳香部分的一系列简单典型例子,来研究由芳香性和反芳香性调制的氢键(AMHB)引起的π离域和芳香性变化。我们观察到,在环内和环外含有HB受体的体系行为存在根本差异,例如,前者形成相应分子簇时环会不稳定,而后者则会稳定。这项工作的结果为相对于合适的非环状非芳香参考体系来合理化AMHB的增强和减弱提供了物理上合理的基础。我们还发现,在形成AMHB时,芳香和反芳香体系的化学键合情况存在显著差异。总之,我们的研究为氢键和π体系之间复杂的相互影响提供了新颖且有价值的见解。