Asadi Samira, Moallem Mehrdad, Wang G Gary
School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada.
Sensors (Basel). 2022 Sep 10;22(18):6866. doi: 10.3390/s22186866.
This paper proposes a Takagi-Sugeno (TS) fuzzy sliding mode observer (SMO) for simultaneous actuator and sensor fault reconstruction in a class of nonlinear systems subjected to unknown disturbances. First, the nonlinear system is represented by a TS fuzzy model with immeasurable premise variables. By filtering the output of the TS fuzzy model, an augmented system whose actuator fault is a combination of the original actuator and sensor faults is constructed. An H∞ performance criteria is considered to minimize the effect of the disturbance on the state estimations. Then, by using two further transformation matrices, a non-quadratic Lyapunov function (NQLF), and fmincon in MATLAB as a nonlinear optimization tool, the gains of the SMO are designed through the stability analysis of the observer. The main advantages of the proposed approach in comparison to the existing methods are using nonlinear optimization tools instead of linear matrix inequalities (LMIs), utilizing NQLF instead of simple quadratic Lyapunov functions (QLF), choosing SMO as the observer, which is robust to the uncertainties, and assuming that the premise variables are immeasurable. Finally, a practical continuous stirred tank reactor (CSTR) is considered as a nonlinear dynamic, and the numerical simulation results illustrate the superiority of the proposed approach compared to the existing methods.
本文针对一类受未知干扰的非线性系统,提出了一种用于同时进行执行器和传感器故障重构的Takagi-Sugeno(TS)模糊滑模观测器(SMO)。首先,非线性系统由具有不可测前提变量的TS模糊模型表示。通过对TS模糊模型的输出进行滤波,构建了一个增广系统,其执行器故障是原始执行器和传感器故障的组合。考虑一个H∞性能准则以最小化干扰对状态估计的影响。然后,通过使用另外两个变换矩阵、一个非二次Lyapunov函数(NQLF)以及MATLAB中的fmincon作为非线性优化工具,通过观测器的稳定性分析来设计SMO的增益。与现有方法相比,该方法的主要优点是使用非线性优化工具而非线性矩阵不等式(LMI),利用NQLF而非简单的二次Lyapunov函数(QLF),选择对不确定性具有鲁棒性的SMO作为观测器,并假设前提变量不可测。最后,将一个实际的连续搅拌釜式反应器(CSTR)视为非线性动态系统,数值仿真结果表明了该方法相对于现有方法的优越性。