State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Department of Physics, Chalmers University of Technology, Göteborg, SE 412 96, Sweden.
Adv Mater. 2022 Dec;34(49):e2207232. doi: 10.1002/adma.202207232. Epub 2022 Oct 31.
Growth of lithium (Li) filaments within solid electrolytes, leading to mechanical degradation of the electrolyte and even short circuit of the cell under high current density, is a great barrier to commercialization of solid-state Li-metal batteries. Understanding of this electro-chemo-mechanical phenomenon is hindered by the challenge of tracking local fields inside the solid electrolyte. Here, a multiphysics simulation aiming to investigate evolution of the mechanical failure of the solid electrolyte induced by the internal growth of Li is reported. Visualization of local stress, damage, and crack propagation within the solid electrolyte enables examination of factors dominating the degradation process, including the geometry, number, and size of Li filaments and voids in the electrolyte. Relative damage induced by locally high stress is found to preferentially occur in the region of the electrolyte/Li interface having great fluctuations. A high number density of Li filaments or voids triggers integration of damage and crack networks by enhanced propagation. This model is built on coupling of mechanical and electrochemical processes for internal plating of Li, revealing evolution of multiphysical fields that can barely be captured by the state-of-the-art experimental techniques. Understanding mechanical degradation of solid electrolytes with the presence of Li filaments paves the way to design advanced solid electrolytes for future solid-state Li-metal batteries.
锂(Li)在固体电解质中形成丝状生长,会导致电解质机械降解,甚至在高电流密度下导致电池短路,这是固态锂金属电池商业化的巨大障碍。由于难以跟踪固体电解质内部的局部场,因此对这种电-化学-机械现象的理解受到阻碍。在这里,报道了一种多物理场模拟,旨在研究由 Li 内部生长引起的固体电解质机械失效的演变。通过可视化固体电解质内部的局部应力、损伤和裂纹扩展,可以检查控制降解过程的因素,包括 Li 丝和电解质中空隙的几何形状、数量和大小。发现局部高应力引起的相对损伤优先发生在电解质/Li 界面处波动较大的区域。Li 丝或空隙的高密度会通过增强的传播触发损伤和裂纹网络的集成。该模型建立在 Li 内部电镀的机械和电化学过程的耦合基础上,揭示了多物理场的演变,这很难仅通过最先进的实验技术来捕捉。理解具有 Li 丝的固体电解质的机械降解为设计未来固态锂金属电池的先进固体电解质铺平了道路。