Department of Statistics, Rice University, Houston, Texas, USA.
Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.
Epilepsia. 2022 Dec;63(12):3156-3167. doi: 10.1111/epi.17415. Epub 2022 Oct 9.
Epilepsy monitoring unit (EMU) admissions are critical for presurgical evaluation of drug-resistant epilepsy but may be nondiagnostic if an insufficient number of seizures are recorded. Seizure forecasting algorithms have shown promise for estimating the likelihood of seizures as a binary event in individual patients, but methods to predict how many seizures will occur remain elusive. Such methods could increase the diagnostic yield of EMU admissions and help patients mitigate seizure-related morbidity. Here, we evaluated the performance of a state-space method that uses prior seizure count data to predict future counts.
A Bayesian negative-binomial dynamic linear model (DLM) was developed to forecast daily electrographic seizure counts in 19 patients implanted with a responsive neurostimulation (RNS) device. Holdout validation was used to evaluate performance in predicting the number of electrographic seizures for forecast horizons ranging 1-7 days ahead.
One-day-ahead prediction of the number of electrographic seizures using a negative-binomial DLM resulted in improvement over chance in 73.1% of time segments compared to a random chance forecaster and remained >50% for forecast horizons of up to 7 days. Superior performance (mean error = .99) was obtained in predicting the number of electrographic seizures in the next day compared to three traditional methods for count forecasting (integer-valued generalized autoregressive conditional heteroskedasticity model or INGARCH, 1.10; Croston, 1.06; generalized linear autoregressive moving average model or GLARMA, 2.00). Number of electrographic seizures in the preceding day and laterality of electrographic pattern detections had highest predictive value, with greater number of electrographic seizures and RNS magnet swipes in the preceding day associated with a higher number of electrographic seizures the next day.
This study demonstrates that DLMs can predict the number of electrographic seizures a patient will experience days in advance with above chance accuracy. This study represents an important step toward the translation of seizure forecasting methods into the optimization of EMU admissions.
癫痫监测单元 (EMU) 的入院对于耐药性癫痫的术前评估至关重要,但如果记录的发作次数不足,可能无法做出诊断。发作预测算法已显示出在个体患者中估计发作可能性的潜力,但预测发作次数的方法仍难以捉摸。这些方法可以提高 EMU 入院的诊断产量,并帮助患者减轻与发作相关的发病率。在这里,我们评估了一种使用先前发作计数数据来预测未来计数的状态空间方法的性能。
开发了一种贝叶斯负二项式动态线性模型 (DLM),用于预测 19 名植入反应性神经刺激 (RNS) 设备的患者的每日脑电图发作计数。使用保留验证来评估在预测 1-7 天提前的脑电图发作数量方面的性能。
与随机机会预测器相比,使用负二项式 DLM 进行一日提前预测脑电图发作数量在 73.1%的时间段内提高了机会水平,并且在最多 7 天的预测范围内仍保持在 50%以上。与用于计数预测的三种传统方法(整数值广义自回归条件异方差模型或 INGARCH、1.10;克罗斯顿、1.06;广义线性自回归移动平均模型或 GLARMA、2.00)相比,预测第二天的脑电图发作数量具有更好的性能(平均误差=0.99)。前一天的脑电图发作数量和脑电图模式检测的偏侧性具有最高的预测价值,前一天的脑电图发作数量和 RNS 磁铁滑动次数越多,第二天的脑电图发作数量就越高。
这项研究表明,DLM 可以提前几天预测患者将经历的脑电图发作次数,具有高于机会的准确性。这项研究代表了将发作预测方法转化为优化 EMU 入院的重要一步。