Suppr超能文献

开发和测试诊断算法,以识别意大利南部索赔数据库中的肢端肥大症患者。

Development and testing of diagnostic algorithms to identify patients with acromegaly in Southern Italian claims databases.

机构信息

Department of Medicine, University of Verona, Verona, Italy.

Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.

出版信息

Sci Rep. 2022 Sep 23;12(1):15843. doi: 10.1038/s41598-022-20295-4.

Abstract

Acromegaly is a rare disease characterized by an excessive production of growth-hormone and insulin-like growth factor 1, typically resulting from a GH-secreting pituitary adenoma. This study was aimed at comparing and measuring accuracy of newly and previously developed coding algorithms for the identification of acromegaly using Italian claims databases. This study was conducted between January 2015 and December 2018, using data from the claims databases of Caserta Local Health Unit (LHU) and Sicily Region in Southern Italy. To detect acromegaly cases from the general target population, four algorithms were developed using combinations of diagnostic, surgical procedure and co-payment exemption codes, pharmacy claims and specialist's visits. Algorithm accuracy was assessed by measuring the Youden Index, sensitivity, specificity, positive and negative predictive values. The percentage of positive cases for each algorithm ranged from 7.9 (95% CI 6.4-9.8) to 13.8 (95% CI 11.7-16.2) per 100,000 inhabitants in Caserta LHU and from 7.8 (95% CI 7.1-8.6) to 16.4 (95% CI 15.3-17.5) in Sicily Region. Sensitivity of the different algorithms ranged from 71.1% (95% CI 54.1-84.6%) to 84.2% (95% CI 68.8-94.0%), while specificity was always higher than 99.9%. The algorithm based on the presence of claims suggestive of acromegaly in ≥ 2 different databases (i.e., hospital discharge records, copayment exemptions registry, pharmacy claims and specialist visits registry) achieved the highest Youden Index (84.2) and the highest positive predictive value (34.8; 95% CI 28.6-41.6). We tested four algorithms to identify acromegaly cases using claims databases with high sensitivity and Youden Index. Despite identifying rare diseases using real-world data is challenging, this study showed that robust validity testing may yield the identification of accurate coding algorithms.

摘要

肢端肥大症是一种罕见的疾病,其特征是生长激素和胰岛素样生长因子 1 过度分泌,通常由 GH 分泌性垂体腺瘤引起。本研究旨在比较和衡量使用意大利索赔数据库为识别肢端肥大症而新开发和先前开发的编码算法的准确性。该研究于 2015 年 1 月至 2018 年 12 月进行,使用了意大利南部卡西塔地方卫生单位 (LHU) 和西西里地区索赔数据库的数据。为了从一般目标人群中检测肢端肥大症病例,使用诊断、手术程序和共付豁免代码、药房索赔和专科医生就诊的组合开发了四种算法。通过测量约登指数、敏感性、特异性、阳性和阴性预测值来评估算法的准确性。每种算法的阳性病例百分比在卡西塔 LHU 为每 100,000 居民 7.9(95%CI 6.4-9.8)至 13.8(95%CI 11.7-16.2),在西西里地区为每 100,000 居民 7.8(95%CI 7.1-8.6)至 16.4(95%CI 15.3-17.5)。不同算法的敏感性范围为 71.1%(95%CI 54.1-84.6%)至 84.2%(95%CI 68.8-94.0%),而特异性始终高于 99.9%。基于在≥2 个不同数据库(即医院出院记录、共付豁免登记处、药房索赔和专科医生就诊登记处)中存在提示肢端肥大症的索赔的算法实现了最高的约登指数(84.2%)和最高的阳性预测值(34.8%;95%CI 28.6-41.6)。我们使用高灵敏度和约登指数的索赔数据库测试了四种算法来识别肢端肥大症病例。尽管使用真实世界数据识别罕见疾病具有挑战性,但本研究表明,稳健的有效性测试可能会产生准确的编码算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e8d/9508179/a4738c4d7d47/41598_2022_20295_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验