Liu Hong, Zou Haiyuan, Wang Mei, Dong Hongliang, Wang Dan, Li Fan, Dai Hao, Song Tao, Wei Shuting, Ji Yongfei, Wang Chenguang, Duan Lele
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China.
Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
Small. 2022 Nov;18(45):e2203442. doi: 10.1002/smll.202203442. Epub 2022 Sep 26.
Accurate control over the coordination circumstances of single-atom catalysts (SACs) is decisive to their intrinsic activity. Here, two single-site heterogeneous organometallic catalysts (SHOCs), CpIr-L/GDY (L = OH and Cl ; Cp = pentamethylcyclopentadienyl), with the fine-tuned local coordination and electronic structure of Ir sites, are constructed by anchoring CpIr complexes on graphdiyne (GDY) matrix via a one-pot procedure. The spectroscopic studies and theoretical calculations indicate that the Ir atoms in CpIr-Cl/GDY and CpIr-OH/GDY have a much higher oxidation state than Ir in the SAC Ir/GDY. As a proof-of-principle demonstration, the GDY-supported SHOCs are used for formic acid dehydrogenation, which display a fivefold enhancement of catalytic activity compared with SAC Ir/GDY. The kinetic isotope effect and in situ Fourier-transform infrared studies reveal that the rate-limiting step is the β-hydride elimination process, and Cp on the Ir site accelerates the β-hydride elimination reaction. The GDY-supported SHOCs integrate the merits of both SACs and molecular catalysts, wherein the isolated Ir anchored on GDY echoes with SACs' behavior, and the Cp* ligand enables precise structural and electronic regulation like molecular catalysts. The scheme of SHOCs adds a degree of freedom in accurate regulation of the local structure, the electronic property, and therefore the catalytic performance of single-atom catalysts.
精确控制单原子催化剂(SACs)的配位环境对其本征活性起决定性作用。在此,通过一锅法将CpIr配合物锚定在石墨炔(GDY)基质上,构建了两种具有微调的Ir位点局部配位和电子结构的单中心多相有机金属催化剂(SHOCs),即CpIr-L/GDY(L = OH和Cl;Cp* = 五甲基环戊二烯基)。光谱研究和理论计算表明,CpIr-Cl/GDY和CpIr-OH/GDY中的Ir原子比SAC Ir/GDY中的Ir具有更高的氧化态。作为原理验证示范,GDY负载的SHOCs用于甲酸脱氢反应,与SAC Ir/GDY相比,其催化活性提高了五倍。动力学同位素效应和原位傅里叶变换红外研究表明,限速步骤是β-氢消除过程,Ir位点上的Cp加速了β-氢消除反应。GDY负载的SHOCs兼具SACs和分子催化剂的优点,其中锚定在GDY上的孤立Ir与SACs的行为相似,而Cp配体能够像分子催化剂一样实现精确的结构和电子调控。SHOCs方案为精确调控单原子催化剂的局部结构、电子性质以及催化性能增加了一个自由度。