Suppr超能文献

利用稳态定量双回波测量 B 场不均匀性的方法。

A method for measuring B field inhomogeneity using quantitative double-echo in steady-state.

机构信息

Department of Radiology, Stanford University, Stanford, California, USA.

Department of Biomedical Data Science, Stanford University, Stanford, California, USA.

出版信息

Magn Reson Med. 2023 Feb;89(2):577-593. doi: 10.1002/mrm.29465. Epub 2022 Sep 25.

Abstract

PURPOSE

To develop and validate a method for mapping for knee imaging using the quantitative Double-Echo in Steady-State (qDESS) exploiting the phase difference ( ) between the two echoes acquired. Contrary to a two-gradient-echo (2-GRE) method, depends only on the first echo time.

METHODS

Bloch simulations were applied to investigate robustness to noise of the proposed methodology and all imaging studies were validated with phantoms and in vivo simultaneous bilateral knee acquisitions. Two phantoms and five healthy subjects were scanned using qDESS, water saturation shift referencing (WASSR), and multi-GRE sequences. maps were calculated with the qDESS and the 2-GRE methods and compared against those obtained with WASSR. The comparison was quantitatively assessed exploiting pixel-wise difference maps, Bland-Altman (BA) analysis, and Lin's concordance coefficient ( ). For in vivo subjects, the comparison was assessed in cartilage using average values in six subregions.

RESULTS

The proposed method for measuring inhomogeneities from a qDESS acquisition provided maps that were in good agreement with those obtained using WASSR. values were 0.98 and 0.90 in phantoms and in vivo, respectively. The agreement between qDESS and WASSR was comparable to that of a 2-GRE method.

CONCLUSION

The proposed method may allow B0 correction for qDESS mapping using an inherently co-registered map without requiring an additional B0 measurement sequence. More generally, the method may help shorten knee imaging protocols that require an auxiliary map by exploiting a qDESS acquisition that also provides measurements and high-quality morphological imaging.

摘要

目的

开发并验证一种利用稳态双回波中的相位差( )进行膝关节成像的定量双回波稳态(qDESS)映射方法。与双梯度回波(2-GRE)方法不同, 仅取决于第一个回波时间。

方法

应用布洛赫模拟研究了所提出的方法对噪声的稳健性,并且所有的成像研究都使用了体模和双侧膝关节同时采集进行了验证。使用 qDESS、水饱和移位参考(WASSR)和多 GRE 序列对两个体模和五名健康受试者进行了扫描。使用 qDESS 和 2-GRE 方法计算了 映射图,并与 WASSR 获得的 映射图进行了比较。通过像素差异图、Bland-Altman(BA)分析和 Lin 的一致性系数( )对比较进行了定量评估。对于体内受试者,在软骨中通过六个亚区的平均值进行了评估。

结果

用于从 qDESS 采集测量不均匀性的提出的方法提供了与使用 WASSR 获得的 映射图非常吻合的 映射图。在体模和体内, 值分别为 0.98 和 0.90。qDESS 和 WASSR 之间的一致性与 2-GRE 方法相当。

结论

所提出的方法可以允许使用固有配准的 映射图对 qDESS 映射进行 B0 校正,而无需额外的 B0 测量序列。更一般地,该方法可以通过利用还提供 测量和高质量形态成像的 qDESS 采集来缩短需要辅助 映射的膝关节成像协议。

相似文献

1
A method for measuring B field inhomogeneity using quantitative double-echo in steady-state.
Magn Reson Med. 2023 Feb;89(2):577-593. doi: 10.1002/mrm.29465. Epub 2022 Sep 25.
3
Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry.
J Magn Reson Imaging. 2023 Apr;57(4):1029-1039. doi: 10.1002/jmri.28365. Epub 2022 Jul 19.
4
Diagnostic Accuracy of Quantitative Multicontrast 5-Minute Knee MRI Using Prospective Artificial Intelligence Image Quality Enhancement.
AJR Am J Roentgenol. 2021 Jun;216(6):1614-1625. doi: 10.2214/AJR.20.24172. Epub 2020 Aug 5.
6
Time-saving opportunities in knee osteoarthritis: T mapping and structural imaging of the knee using a single 5-min MRI scan.
Eur Radiol. 2020 Apr;30(4):2231-2240. doi: 10.1007/s00330-019-06542-9. Epub 2019 Dec 16.
7
Reproducibility of Quantitative Double-Echo Steady-State T Mapping of Knee Cartilage.
J Magn Reson Imaging. 2025 Feb;61(2):784-795. doi: 10.1002/jmri.29431. Epub 2024 May 4.
8
Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR.
Neuroimage. 2014 Feb 1;86:265-79. doi: 10.1016/j.neuroimage.2013.09.072. Epub 2013 Oct 8.
9
Non-contrast MRI of synovitis in the knee using quantitative DESS.
Eur Radiol. 2021 Dec;31(12):9369-9379. doi: 10.1007/s00330-021-08025-2. Epub 2021 May 15.
10
Detection of knee synovitis using non-contrast-enhanced qDESS compared with contrast-enhanced MRI.
Arthritis Res Ther. 2021 Feb 13;23(1):55. doi: 10.1186/s13075-021-02436-8.

引用本文的文献

1
Open-source, MRI-compatible grip force sensor for dynamic muscle imaging.
MAGMA. 2025 Jul 25. doi: 10.1007/s10334-025-01282-y.
3
Updates on Compositional MRI Mapping of the Cartilage: Emerging Techniques and Applications.
J Magn Reson Imaging. 2023 Jul;58(1):44-60. doi: 10.1002/jmri.28689. Epub 2023 Apr 3.

本文引用的文献

1
Correcting B inhomogeneity-induced distortions in whole-body diffusion MRI of bone.
Sci Rep. 2022 Jan 7;12(1):265. doi: 10.1038/s41598-021-04467-2.
3
Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO).
Magn Reson Med. 2021 Apr;85(4):2294-2308. doi: 10.1002/mrm.28563. Epub 2020 Oct 26.
4
Simultaneous Multiple Resonance Frequency imaging (SMURF): Fat-water imaging using multi-band principles.
Magn Reson Med. 2021 Mar;85(3):1379-1396. doi: 10.1002/mrm.28519. Epub 2020 Sep 27.
5
Diagnostic Accuracy of Quantitative Multicontrast 5-Minute Knee MRI Using Prospective Artificial Intelligence Image Quality Enhancement.
AJR Am J Roentgenol. 2021 Jun;216(6):1614-1625. doi: 10.2214/AJR.20.24172. Epub 2020 Aug 5.
7
Rapid Knee MRI Acquisition and Analysis Techniques for Imaging Osteoarthritis.
J Magn Reson Imaging. 2020 Nov;52(5):1321-1339. doi: 10.1002/jmri.26991. Epub 2019 Nov 21.
10
SEGUE: A Speedy rEgion-Growing Algorithm for Unwrapping Estimated Phase.
IEEE Trans Med Imaging. 2019 Jun;38(6):1347-1357. doi: 10.1109/TMI.2018.2884093. Epub 2018 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验