Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2207505119. doi: 10.1073/pnas.2207505119. Epub 2022 Sep 26.
, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, grew on both steroids. In contrast to , RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the complex lack genes encoding HsaD, the -cleavage product (MCP) hydrolase. However, ATCC 19977 harbors two homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaD and HsaD of had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (/ = 1.9 × 10 and 5.7 × 10 mMs, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaD also transformed nonthioesterified substrates efficiently, and a Δ mutant of grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The Δ mutant of excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the Δ mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.
,一种机会性病原体,可导致肺部感染,其基因组中预测有两个甾类物质分解代谢途径的基因:与 相似的胆固醇分解代谢途径和 4-雄烯二酮(4-AD)分解代谢途径。与这一预测一致,该菌能在甾类物质上生长。与 、RHA1 和其他放线菌不同, 复杂的胆固醇和 4-AD 分解代谢基因簇缺乏编码 HsaD(MCP)水解酶的基因。然而,ATCC 19977 在其基因组的其他位置拥有两个 同源物。编码的酶中只有一种可检测到转化甾类代谢物。在所测试的底物中,HsaD 和 的 HsaD 对具有部分降解的侧链硫酯键合辅酶 A 的 MCP 具有最高的底物特异性(/分别为 1.9×10 和 5.7×10 mMs)。与胆固醇和 4-AD 分解代谢的双重作用一致,HsaD 也能有效地转化非硫酯键合的底物,而 的 Δ突变体既不能在甾类物质上生长。有趣的是,两种甾类物质都阻止了突变体在醋酸盐上的生长。 的 Δ突变体分泌具有完全降解侧链的胆固醇代谢物,而相应的 RHA1 突变体则分泌具有部分降解侧链的代谢物。最后,Δ突变体在巨噬细胞中无法存活。总的来说,我们的数据表明, 胆固醇和 4-AD 分解代谢途径是独特的,因为它们在特征性的甾类物质分解代谢细菌中发生的上游位置收敛。数据进一步表明,胆固醇是细胞内细菌的底物,并且胆固醇依赖性毒性并不严格依赖于辅酶 A 的隔离。