Yang Zhipeng, Li Hongqiang, Zhong Yunchang, Lai Xuejun, Ding Jianping, Chen Zhonghua, Zeng Xingrong
School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China.
ACS Appl Mater Interfaces. 2022 Oct 5;14(39):44878-44889. doi: 10.1021/acsami.2c14919. Epub 2022 Sep 26.
With the rapid development of flexible electronics and the increasing deterioration of the natural environment, functional and environmentally friendly flexible strain sensors have become one of the frontier research hotspots. Here, we propose a novel strategy to synthesize a functional epoxy elastomer integrating self-healing capability and degradability for flexible stretchable strain sensors. A carboxyl-terminated epoxy prepolymer was first synthesized using carboxyl-terminated PEG (PEG-COOH), 2,2'-dithiodibenzoic acid (DTSA), and 1,4-butanediol diglycidyl ether (BDDE), and then crosslinked by epoxidized soybean oil (ESO) to yield an epoxy elastomer. The obtained elastomer exhibited not only high tensile stress (5.07 MPa), large stretchability (477%), and high healing efficiency (92.5%) but also superior degradability in alkaline aqueous solution. The elastomer-based stretchable strain sensor with microstructure showed high sensitivity (GF = 176.71) and was successfully applied for detecting human motions and recognizing objects with various shapes. Moreover, the healed sensor could restore stable sensing ability. The prepared functional epoxy elastomer is of great significance for the preparation of environmentally friendly and high-performance sensors and is promising for applications in the fields of healthcare monitoring, intelligent robots, and wearable electronics.
随着柔性电子技术的快速发展以及自然环境的日益恶化,功能化且环保的柔性应变传感器已成为前沿研究热点之一。在此,我们提出一种新颖的策略来合成一种兼具自愈能力和可降解性的功能化环氧弹性体,用于柔性可拉伸应变传感器。首先使用羧基封端的聚乙二醇(PEG-COOH)、2,2'-二硫代二苯甲酸(DTSA)和1,4-丁二醇二缩水甘油醚(BDDE)合成了羧基封端的环氧预聚物,然后通过环氧大豆油(ESO)进行交联以得到一种环氧弹性体。所制备的弹性体不仅表现出高拉伸应力(5.07 MPa)、大拉伸性(477%)和高自愈效率(92.5%),而且在碱性水溶液中具有优异的可降解性。具有微观结构的基于该弹性体的可拉伸应变传感器表现出高灵敏度(GF = 176.71),并成功应用于人体运动检测和各种形状物体的识别。此外,愈合后的传感器能够恢复稳定的传感能力。所制备的功能化环氧弹性体对于制备环保型高性能传感器具有重要意义,在医疗监测、智能机器人和可穿戴电子等领域具有广阔的应用前景。