Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
J Biol Chem. 2022 Nov;298(11):102534. doi: 10.1016/j.jbc.2022.102534. Epub 2022 Sep 24.
Gut microbiota regulate physiological functions in various hosts, such as energy metabolism and immunity. Lactic acid bacteria, including Lactobacillus plantarum, have a specific polyunsaturated fatty acid saturation metabolism that generates multiple fatty acid species, such as hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and trans-fatty acids. How these bacterial metabolites impact host physiology is not fully understood. Here, we investigated the ligand activity of lactic acid bacteria-produced fatty acids in relation to nuclear hormone receptors expressed in the small intestine. Our reporter assays revealed two bacterial metabolites of γ-linolenic acid (GLA), 13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-cis-6,cis-9-octadecadienoic acid (γKetoD) activated peroxisome proliferator-activated receptor delta (PPARδ) more potently than GLA. We demonstrate that both γHYD and γKetoD bound directly to the ligand-binding domain of human PPARδ. A docking simulation indicated that four polar residues (T289, H323, H449, and Y473) of PPARδ donate hydrogen bonds to these fatty acids. Interestingly, T289 does not donate a hydrogen bond to GLA, suggesting that bacterial modification of GLA introducing hydroxy and oxo group determines ligand selectivity. In human intestinal organoids, we determined γHYD and γKetoD increased the expression of PPARδ target genes, enhanced fatty acid β-oxidation, and reduced intracellular triglyceride accumulation. These findings suggest that γHYD and γKetoD, which gut lactic acid bacteria could generate, are naturally occurring PPARδ ligands in the intestinal tract and may improve lipid metabolism in the human intestine.
肠道微生物群调节各种宿主的生理功能,如能量代谢和免疫。包括植物乳杆菌在内的乳酸菌具有特定的多不饱和脂肪酸饱和代谢途径,可生成多种脂肪酸,如羟基脂肪酸、氧代脂肪酸、共轭脂肪酸和反式脂肪酸。这些细菌代谢物如何影响宿主生理机能尚未完全清楚。在这里,我们研究了与小肠中表达的核激素受体相关的乳酸菌产生的脂肪酸的配体活性。我们的报告基因检测表明,γ-亚麻酸(GLA)的两种细菌代谢产物 13-羟基顺-6,顺-9-十八碳二烯酸(γHYD)和 13-氧代顺-6,顺-9-十八碳二烯酸(γKetoD)比 GLA 更能激活过氧化物酶体增殖物激活受体 δ(PPARδ)。我们证明,γHYD 和 γKetoD 均直接与人类 PPARδ 的配体结合域结合。对接模拟表明,PPARδ 的四个极性残基(T289、H323、H449 和 Y473)向这些脂肪酸捐赠氢键。有趣的是,T289 不向 GLA 捐赠氢键,这表明细菌对 GLA 的修饰引入羟基和氧基团决定了配体的选择性。在人类肠类器官中,我们确定 γHYD 和 γKetoD 增加了 PPARδ 靶基因的表达,增强了脂肪酸β-氧化,并减少了细胞内甘油三酯的积累。这些发现表明,肠道乳酸菌可能产生的 γHYD 和 γKetoD 是肠道中天然存在的 PPARδ 配体,可改善人类肠道中的脂质代谢。