Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
Acta Biomater. 2022 Nov;153:411-418. doi: 10.1016/j.actbio.2022.09.048. Epub 2022 Sep 24.
The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants and breakthrough infections despite available coronavirus disease 2019 (COVID-19) vaccines calls for antiviral therapeutics. The application of soluble angiotensin converting enzyme 2 (ACE2) as a SARS-CoV-2 decoy that reduces cell bound ACE2-mediated virus entry is limited by a short plasma half-life. This work presents a recombinant human albumin ACE2 genetic fusion (rHA-ACE2) to increase the plasma half-life by an FcRn-driven cellular recycling mechanism, investigated using a wild type (WT) albumin sequence and sequence engineered with null FcRn binding (NB). Binding of rHA-ACE2 fusions to SARS-CoV-2 spike protein subdomain 1 (S1) was demonstrated (WT-ACE2 K = 32.8 nM and NB-ACE2 K = 31.7 nM) using Bio-Layer Interferometry and dose-dependent in vitro inhibition of host cell infection of pseudotyped viruses displaying surface SARS-CoV-2 spike (S) protein. FcRn-mediated in vitro recycling was translated to a five times greater plasma half-life of WT-ACE2 (t β = 13.5 h) than soluble ACE2 (t β = 2.8 h) in humanised FcRn/albumin double transgenic mice. The rHA-ACE2-based SARS-CoV-2 decoy system exhibiting FcRn-driven circulatory half-life extension introduced in this work offers the potential to expand and improve the anti-COVID-19 anti-viral drug armoury. STATEMENT OF SIGNIFICANCE: The COVID-19 pandemic has highlighted the need for rapid development of efficient antiviral therapeutics to combat SARS-CoV-2 and new mutants to lower morbidity and mortality in severe cases, and for people that are unable to receive a vaccine. Here we report a therapeutic albumin ACE2 fusion protein (rHA-ACE2), that can bind SARS-CoV-2 S protein decorated virus-like particles to inhibit viral infection, and exhibits extended in vivo half-life compared to ACE2 alone. Employing ACE2 as a binding decoy for the virus is expected to efficiently inhibit all SARS-CoV-2 mutants as they all rely on binding with endogenous ACE2 for viral cell entry and, therefore, rHA-ACE2 constitutes a versatile addition to the therapeutic arsenal for combatting COVID-19.
新型严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 突变株和突破性感染的出现,尽管有可用的 2019 年冠状病毒病 (COVID-19) 疫苗,但仍需要抗病毒治疗。可溶性血管紧张素转换酶 2 (ACE2) 的应用作为一种 SARS-CoV-2 诱饵,可减少细胞结合的 ACE2 介导的病毒进入,但由于其血浆半衰期短而受到限制。本工作提出了一种重组人白蛋白 ACE2 基因融合物 (rHA-ACE2),通过 FcRn 驱动的细胞回收机制增加血浆半衰期,该机制使用野生型 (WT) 白蛋白序列和序列工程进行了研究,该序列与 null FcRn 结合 (NB)。使用生物层干涉法证明了 rHA-ACE2 融合物与 SARS-CoV-2 亚结构域 1 (S1) 的结合 (WT-ACE2 K=32.8 nM 和 NB-ACE2 K=31.7 nM),并使用假型病毒进行了剂量依赖性的宿主细胞感染抑制,该假型病毒显示表面 SARS-CoV-2 刺突 (S) 蛋白。FcRn 介导的体外循环回收转化为 WT-ACE2 的血浆半衰期延长了五倍 (tβ=13.5 h),而可溶性 ACE2 (tβ=2.8 h) 在人源化 FcRn/白蛋白双转基因小鼠中。本研究引入的基于 rHA-ACE2 的 SARS-CoV-2 诱饵系统具有 FcRn 驱动的循环半衰期延长,为扩大和改进抗 COVID-19 抗病毒药物库提供了潜力。意义声明:COVID-19 大流行凸显了快速开发有效抗病毒疗法以对抗 SARS-CoV-2 和新突变株的必要性,以降低严重病例的发病率和死亡率,并为无法接种疫苗的人提供治疗方法。在这里,我们报告了一种治疗性白蛋白 ACE2 融合蛋白 (rHA-ACE2),它可以结合 SARS-CoV-2 S 蛋白装饰的病毒样颗粒来抑制病毒感染,并且与单独的 ACE2 相比,它具有延长的体内半衰期。将 ACE2 用作病毒的结合诱饵有望有效地抑制所有 SARS-CoV-2 突变株,因为它们都依赖于与内源性 ACE2 结合来进行病毒细胞进入,因此 rHA-ACE2 是对抗 COVID-19 的治疗武器库的多功能补充。