Jha Navnit, Verma Shikha
Faculty of Mathematics and Computer Science, South Asian University, New Delhi 110021, India.
MethodsX. 2022 Sep 10;9:101853. doi: 10.1016/j.mex.2022.101853. eCollection 2022.
The present method describes the high-resolution compact discretization method for the numerical solution of the nonlinear fractal convection-diffusion model on a rectangular plate by employing the Hausdorff distance metric. Estimation of anomalous diffusion is formulated by averaging forward and backward mesh stencils. The higher-order fractional derivatives are appropriately approximated on a minimum mesh stencil and subsequently considered for designing a numerical method that falls in the scope of expanded accuracy. Compact discretization is an efficient technique for partial differential equations; however, studies that apply high-resolution scheme for fractional-order systems are still uninvestigated. A second and fourth-order numerical method for the fractional-order convection-dominated anomalous diffusion equation in two dimensions is constructed for practical applications. Convergence of high-order method is obtained for the nonlinear partial differential equations employing Hausdorff fractal distance metric. The numerical simulations with fractal Graetz-Nusselt equation, fractal Poisson equation, fractal Schrödinger equation, and anomalous diffusion equations with variable and constant coefficients are considered to illustrate the utility of the numerical method in the context of local fractional partial differential equations.•The paper demonstrates a computational method for the fractal convection-diffusion model on a rectangular plate.•Two numerical methods of order two and four for the mildly nonlinear fractional-order convection-dominated anomalous diffusion equations are proposed.•The high-resolution scheme is computationally efficient and makes use of minimal data storage.: High-order method for 2D convection-dominated anomalous diffusion equation, Graetz-Nusselt equation, Poisson equation, and Schrödinger equation in fractal media.
本文方法描述了一种高分辨率紧凑离散化方法,用于通过采用豪斯多夫距离度量对矩形板上的非线性分形对流扩散模型进行数值求解。反常扩散的估计通过对向前和向后网格模板进行平均来制定。高阶分数阶导数在最小网格模板上进行适当近似,随后用于设计一种精度扩展范围内的数值方法。紧凑离散化是求解偏微分方程的一种有效技术;然而,将高分辨率格式应用于分数阶系统的研究仍未得到探讨。针对实际应用,构建了二维分数阶对流主导反常扩散方程的二阶和四阶数值方法。对于采用豪斯多夫分形距离度量的非线性偏微分方程,获得了高阶方法的收敛性。考虑了分形格雷茨 - 努塞尔特方程、分形泊松方程、分形薛定谔方程以及变系数和常系数反常扩散方程的数值模拟,以说明该数值方法在局部分数阶偏微分方程背景下的实用性。
•本文展示了一种用于矩形板上分形对流扩散模型的计算方法。
•提出了用于轻度非线性分数阶对流主导反常扩散方程的二阶和四阶两种数值方法。
•高分辨率格式计算效率高,且数据存储量最小。:分形介质中二维对流主导反常扩散方程、格雷茨 - 努塞尔特方程、泊松方程和薛定谔方程的高阶方法。