School of Pharmacy, Nanchang University, Nanchang 330006, China.
Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Theranostics. 2022 Aug 29;12(14):6395-6408. doi: 10.7150/thno.74848. eCollection 2022.
The overall clinical response to FGFR inhibitor (FGFRi) is far from satisfactory in cancer patients stratified by FGFR aberration, the current biomarker in clinical practice. A novel biomarker to evaluate the therapeutic response to FGFRi in a non-invasive and dynamic manner is thus greatly desired. Six FGFR-aberrant cancer cell lines were used, including four FGFRi-sensitive ones (NCI-H1581, NCI-H716, RT112 and Hep3B) and two FGFRi-resistant ones (primary for NCI-H2444 and acquired for NCI-H1581/AR). Cell viability and tumor xenograft growth analyses were performed to evaluate FGFRi sensitivities, accompanied by corresponding F-fluorodeoxyglucose (F-FDG) uptake assay. mTOR/PLCγ/MEK-ERK signaling blockade by specific inhibitors or siRNAs was applied to determine the regulation mechanism. FGFR inhibition decreased the accumulation of F-FDG only in four FGFRi-sensitive cell lines, but in neither of FGFRi-resistant ones. We then demonstrated that FGFRi-induced transcriptional downregulation of hexokinase 2 (HK2), a key factor of glucose metabolism and FDG trapping, via mTOR pathway leading to this decrease. Moreover, F-FDG PET imaging successfully differentiated the FGFRi-sensitive tumor xenografts from primary or acquired resistant ones by the tumor F-FDG accumulation change upon FGFRi treatment. Of note, both F-FDG tumor accumulation and HK2 expression could respond the administration/withdrawal of FGFRi in NCI-H1581 xenografts correspondingly. The novel association between the molecular mechanism (FGFR/mTOR/HK2 axis) and radiological phenotype (F-FDG PET uptake) of FGFR-targeted therapy was demonstrated in multiple preclinical models. The adoption of F-FDG PET biomarker-based imaging strategy to assess response/resistance to FGFR inhibition may benefit treatment selection for cancer patients.
在基于 FGFR 异常的癌症患者中,目前临床实践中的生物标志物,FGFR 抑制剂(FGFRi)的总体临床反应远不能令人满意。因此,非常需要一种新的生物标志物来非侵入性和动态地评估 FGFRi 的治疗反应。使用了 6 种 FGFR 异常癌细胞系,包括 4 种 FGFRi 敏感的细胞系(NCI-H1581、NCI-H716、RT112 和 Hep3B)和 2 种 FGFRi 耐药的细胞系(原发性 NCI-H2444 和获得性 NCI-H1581/AR)。进行细胞活力和肿瘤异种移植生长分析以评估 FGFRi 敏感性,并进行相应的 F-氟脱氧葡萄糖(F-FDG)摄取测定。应用特异性抑制剂或 siRNA 阻断 mTOR/PLCγ/MEK-ERK 信号通路,以确定调节机制。FGFR 抑制仅在 4 种 FGFRi 敏感细胞系中降低 F-FDG 的积累,但在 FGFRi 耐药细胞系中均未降低。然后,我们证明 FGFRi 通过 mTOR 通路诱导葡萄糖代谢和 FDG 捕获的关键因子己糖激酶 2(HK2)的转录下调,导致这种减少。此外,通过 FGFRi 治疗后肿瘤 F-FDG 积累的变化,F-FDG PET 成像成功地区分了 FGFRi 敏感的肿瘤异种移植与原发性或获得性耐药的肿瘤异种移植。值得注意的是,在 NCI-H1581 异种移植中,F-FDG 肿瘤积累和 HK2 表达都可以相应地响应 FGFRi 的给药/停药。在多个临床前模型中证明了 FGFR 靶向治疗的分子机制(FGFR/mTOR/HK2 轴)与放射性表型(F-FDG PET 摄取)之间的新关联。采用 F-FDG PET 生物标志物成像策略评估 FGFR 抑制的反应/耐药性可能有利于癌症患者的治疗选择。