Suppr超能文献

使用改进的深度神经网络模型从不平衡心电图信号中预测心脏异常及少数类准确率的增强。

The prediction of cardiac abnormality and enhancement in minority class accuracy from imbalanced ECG signals using modified deep neural network models.

作者信息

Rai Hari Mohan, Chatterjee Kalyan, Dashkevych Serhii

机构信息

Department of Electrical Engineering, Indian Institute of Technology(ISM), Dhanbad, India; Department of Electronics and Communication Engineering, Dronacharya Group of Institutions, Greater Noida, India.

Department of Electrical Engineering, Indian Institute of Technology(ISM), Dhanbad, India.

出版信息

Comput Biol Med. 2022 Nov;150:106142. doi: 10.1016/j.compbiomed.2022.106142. Epub 2022 Sep 22.

Abstract

Cardiovascular disease (CVD) is the most fatal disease in the world, so its accurate and automated detection in the early stages will certainly support the medical expert in timely diagnosis and treatment, which can save many lives. Many types of research have been carried out in this regard, but due to the problem of data imbalance in the medical and health care sector, it may not provide the desired results in all aspects. To overcome this problem, a sequential ensemble technique has been proposed that detects 6 types of cardiac arrhythmias on large ECG imbalanced datasets, and the data imbalanced issue of the ECG dataset has been addressed by using a hybrid data resampling technique called "Synthetically Minority Oversampling Technique and Tomek Link (SMOTE + Tomek)". The sequential ensemble technique employs two distinct deep learning models: Convolutional Neural Network (CNN) and a hybrid model, CNN with Long Short-Term Memory Network (CNN-LSTM). The two standard datasets "MIT-BIH arrhythmias database" (MITDB) and "PTB diagnostic database" (PTBDB) are combined and extracted 23, 998 ECG beats for the model validation. In this work, the three models CNN, CNN-LSTM, and ensemble approach were tested on four kinds of ECG datasets: the original data (imbalanced), the data sampled using a random oversampled technique, data sampled using SMOTE, and the dataset resampled using SMOTE + Tomek algorithm. The overall highest accuracy was obtained of 99.02% on the SMOTE + Tomek sampled dataset by ensemble technique and the minority class accuracy result (Recall) is improved by 20% as compared to the imbalanced data.

摘要

心血管疾病(CVD)是世界上最致命的疾病,因此其早期阶段的准确自动检测必将有助于医学专家进行及时诊断和治疗,从而挽救许多生命。在这方面已经开展了多种类型的研究,但由于医疗卫生领域的数据不平衡问题,可能无法在所有方面都取得理想的结果。为了克服这个问题,人们提出了一种顺序集成技术,该技术可在大型心电图不平衡数据集上检测6种类型的心律失常,并且通过使用一种名为“合成少数类过采样技术和托梅克链接(SMOTE + Tomek)”的混合数据重采样技术解决了心电图数据集的数据不平衡问题。顺序集成技术采用了两种不同的深度学习模型:卷积神经网络(CNN)和一种混合模型,即带有长短期记忆网络的CNN(CNN-LSTM)。将两个标准数据集“麻省理工学院-比哈尔心律失常数据库”(MITDB)和“PTB诊断数据库”(PTBDB)合并,并提取23,998个心电图搏动用于模型验证。在这项工作中,对CNN、CNN-LSTM和集成方法这三种模型在四种心电图数据集上进行了测试:原始数据(不平衡)、使用随机过采样技术采样的数据、使用SMOTE采样的数据以及使用SMOTE + Tomek算法重采样的数据集。通过集成技术在SMOTE + Tomek采样数据集上获得的总体最高准确率为99.02%,与不平衡数据相比,少数类准确率结果(召回率)提高了20%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验