Suppr超能文献

使用多变量自适应关联测试,根据 GWAS 汇总统计数据识别主要精神疾病的多效基因。

Identifying pleiotropic genes for major psychiatric disorders with GWAS summary statistics using multivariate adaptive association tests.

机构信息

Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.

Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.

出版信息

J Psychiatr Res. 2022 Nov;155:471-482. doi: 10.1016/j.jpsychires.2022.09.038. Epub 2022 Sep 21.

Abstract

BACKGROUND

Genome wide association studies (GWAS) have discovered a few of single nucleotide polymorphisms (SNPs) related to major psychiatric disorders. However, it is not completely clear which genes play a pleiotropic role in multiple disorders. The study aimed to identify the pleiotropic genes across five psychiatric disorders using multivariate adaptive association tests.

METHODS

Summary statistics of five psychiatric disorders were downloaded from Psychiatric Genomics Consortium. We applied linkage disequilibrium score regression (LDSC) to estimate genetic correlation and conducted tissue and cell type specificity analyses based on Multi-marker Analysis of GenoMic Annotation (MAGMA). Then, we identified the pleiotropic genes using MTaSPUsSet and aSPUs tests. We ultimately performed the functional analysis for pleiotropic genes.

RESULTS

We confirmed the significant genetic correlation and brain tissue and neuron specificity among five disorders. 100 pleiotropic genes were detected to be significantly associated with five psychiatric disorders, of which 55 were novel genes. These genes were functionally enriched in neuron differentiation and synaptic transmission.

LIMITATIONS

The effect direction of pleiotropic genes couldn't be distinguished due to without individual-level data.

CONCLUSION

We identified pleiotropic genes using multivariate adaptive association tests and explored their biological function. The findings may provide novel insight into the development and implementation of prevention and treatment as well as targeted drug discovery in practice.

摘要

背景

全基因组关联研究(GWAS)已经发现了一些与主要精神疾病相关的单核苷酸多态性(SNP)。然而,目前尚不清楚哪些基因在多种疾病中发挥多效性作用。本研究旨在使用多变量适应性关联测试来确定跨越五种精神疾病的多效性基因。

方法

从精神疾病基因组学联盟下载了五种精神疾病的汇总统计数据。我们应用连锁不平衡评分回归(LDSC)来估计遗传相关性,并基于多标记基因分析基因组注释(MAGMA)进行组织和细胞类型特异性分析。然后,我们使用 MTaSPUsSet 和 aSPUs 测试来识别多效性基因。我们最终对多效性基因进行了功能分析。

结果

我们证实了五种疾病之间存在显著的遗传相关性和大脑组织及神经元特异性。检测到 100 个多效性基因与五种精神疾病显著相关,其中 55 个是新基因。这些基因在神经元分化和突触传递中具有功能富集。

局限性

由于缺乏个体水平的数据,无法区分多效性基因的作用方向。

结论

我们使用多变量适应性关联测试来识别多效性基因,并探索其生物学功能。这些发现可能为预防和治疗的发展和实施以及实践中的靶向药物发现提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验