Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
J Biol Chem. 2022 Dec;298(12):102552. doi: 10.1016/j.jbc.2022.102552. Epub 2022 Sep 29.
Intrinsically disordered proteins (IDPs) often coordinate transient interactions with multiple proteins to mediate complex signals within large protein networks. Among these, the IDP hub protein G3BP1 can form complexes with cytoplasmic phosphoprotein Caprin1 and ubiquitin peptidase USP10; the resulting control of USP10 activity contributes to a pathogenic virulence system that targets endocytic recycling of the ion channel CFTR. However, while the identities of protein interactors are known for many IDP hub proteins, the relationship between pairwise affinities and the extent of protein recruitment and activity is not well understood. Here, we describe in vitro analysis of these G3BP1 affinities and show tryptophan substitutions of specific G3BP1 residues reduce its affinity for both USP10 and Caprin1. We show that these same mutations reduce the stability of complexes between the full-length proteins, suggesting that copurification can serve as a surrogate measure of interaction strength. The crystal structure of G3BP1 TripleW (F15W/F33W/F124W) mutant reveals a clear reorientation of the side chain of W33, creating a steric clash with USP10 and Caprin1. Furthermore, an amino-acid scan of USP10 and Caprin1 peptides reveals similarities and differences in the ability to substitute residues in the core motifs as well as specific substitutions with the potential to create higher affinity peptides. Taken together, these data show that small changes in component binding affinities can have significant effects on the composition of cellular interaction hubs. These specific protein mutations can be harnessed to manipulate complex protein networks, informing future investigations into roles of these networks in cellular processes.
无定形蛋白质 (IDP) 通常与多种蛋白质协调瞬时相互作用,以介导大型蛋白质网络中的复杂信号。在这些蛋白质中,IDP 枢纽蛋白 G3BP1 可以与细胞质磷蛋白 Caprin1 和泛素肽酶 USP10 形成复合物;由此控制 USP10 的活性有助于靶向离子通道 CFTR 内吞再循环的致病性毒力系统。然而,虽然许多 IDP 枢纽蛋白的蛋白质相互作用体的身份已知,但成对亲和力与蛋白质募集和活性的程度之间的关系尚不清楚。在这里,我们描述了这些 G3BP1 亲和力的体外分析,并显示特定 G3BP1 残基的色氨酸取代会降低其与 USP10 和 Caprin1 的亲和力。我们表明,这些相同的突变会降低全长蛋白质之间复合物的稳定性,这表明共纯化可以作为相互作用强度的替代衡量标准。G3BP1 TripleW (F15W/F33W/F124W) 突变体的晶体结构显示出 W33 侧链的明显重排,与 USP10 和 Caprin1 产生空间冲突。此外,USP10 和 Caprin1 肽的氨基酸扫描揭示了核心基序中取代残基的能力以及具有潜在形成更高亲和力肽的特定取代的相似性和差异性。总之,这些数据表明,组成成分结合亲和力的微小变化会对细胞相互作用枢纽的组成产生重大影响。这些特定的蛋白质突变可以被利用来操纵复杂的蛋白质网络,为这些网络在细胞过程中的作用的未来研究提供信息。