Wenger Seth J, Stowe Edward S, Gido Keith B, Freeman Mary C, Kanno Yoichiro, Franssen Nathan R, Olden Julian D, Poff N LeRoy, Walters Annika W, Bumpers Phillip M, Mims Meryl C, Hooten Mevin B, Lu Xinyi
Odum School of Ecology University of Georgia Athens Georgia USA.
Division of Biology Kansas State University Manhattan Kansas USA.
Ecol Evol. 2022 Sep 27;12(9):e9339. doi: 10.1002/ece3.9339. eCollection 2022 Sep.
Time-series data offer wide-ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses. We consider three relatively simple regression models for time series, using simulated and empirical (fish and mammal) datasets. Model A is a conventional generalized linear model of abundance, model B adds a temporal autoregressive term, and model C uses an estimate of population growth rate as a response variable, with the option of including a term for density dependence. All models can be fit using Bayesian and non-Bayesian methods. Simulation results demonstrated that model C tended to have greater support for long-lived, lower-fecundity organisms (K life-history strategists), while model A, the simplest, tended to be supported for shorter-lived, high-fecundity organisms (r life-history strategists). Analysis of real-world fish and mammal datasets found that models A, B, and C each enjoyed support for at least some species, but sometimes yielded different insights. In particular, model C indicated effects of predictor variables that were not evident in analyses with models A and B. Bayesian and frequentist models yielded similar parameter estimates and performance. We conclude that relatively simple models are useful for testing hypotheses about the factors that influence abundance in time-series data, and can be appropriate choices for datasets that lack the information needed to fit more complicated models. When feasible, we advise fitting datasets with multiple models because they can provide complementary information.
时间序列数据为检验有关影响物种丰度的物理和生物因素的假设提供了广泛的机会。尽管已经开发并应用了复杂的模型来分析丰度时间序列,但它们需要有关物种可检测性的信息,而这些信息往往无法获得。我们认为,在许多情况下,更简单的模型就足以检验假设。我们使用模拟和实证(鱼类和哺乳动物)数据集,考虑了三种相对简单的时间序列回归模型。模型A是一种传统的丰度广义线性模型,模型B添加了一个时间自回归项,模型C使用种群增长率估计值作为响应变量,并可选择包含密度依赖项。所有模型都可以使用贝叶斯和非贝叶斯方法进行拟合。模拟结果表明,模型C往往更支持寿命长、繁殖力低的生物(K生活史策略者),而最简单的模型A则往往更支持寿命短、繁殖力高的生物(r生活史策略者)。对真实世界的鱼类和哺乳动物数据集的分析发现,模型A、B和C都至少对某些物种得到了支持,但有时会产生不同的见解。特别是,模型C显示了预测变量的影响,而这些影响在模型A和B的分析中并不明显。贝叶斯模型和频率主义模型产生了相似的参数估计和性能。我们得出结论,相对简单的模型对于检验有关影响时间序列数据中丰度的因素的假设很有用,并且对于缺乏拟合更复杂模型所需信息的数据集可能是合适的选择。在可行的情况下,我们建议用多个模型拟合数据集,因为它们可以提供互补信息。