文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

VitRad: A low-cost continuous wave Doppler radar system with 3D-printed horn antennas for human vital sign detection.

作者信息

Jeong Hyunmin, Kim Dohyun, Kim Gyoungdeuk, Kim Sangkil

机构信息

Department of Electronics Engineering, Pusan National University, Busan 46241, South Korea.

出版信息

HardwareX. 2022 Sep 20;12:e00361. doi: 10.1016/j.ohx.2022.e00361. eCollection 2022 Oct.


DOI:10.1016/j.ohx.2022.e00361
PMID:36188873
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9515602/
Abstract

In this study, a low-cost continuous wave (CW) radar system with 3D-printed high-gain horn antennas called VitRad is proposed for human vital sign detection. The CW radar consists of 3D-printed high-gain horn antennas, commercially available low-cost surface-mounting devices, and monolithic ICs. The CW radar system operates at a frequency band of 5.8 GHz, and the backscattered I/Q data are collected using a digital storage oscilloscope (DSO). The data is processed on MATLAB to determine vital sign information such as respiratory and heartbeat rates. It is demonstrated that the proposed CW radar system for vital-sign monitoring can effectively measure respiratory and heartbeat rates.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/5d4f7290b314/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/dec102fddd77/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/1a0b27f277bc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/62fc35620170/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/9c51fd867aac/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/72bca3ac803f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/2e860669ae2d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/d279f5e0425c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/61d944596885/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/382c1dffa8f7/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/6d5c7e43cbb7/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/653cd8b858a3/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/21a64daf8556/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/654da36fb655/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/bdf949e8e2b3/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/966b08de4d55/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/5d4f7290b314/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/dec102fddd77/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/1a0b27f277bc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/62fc35620170/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/9c51fd867aac/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/72bca3ac803f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/2e860669ae2d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/d279f5e0425c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/61d944596885/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/382c1dffa8f7/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/6d5c7e43cbb7/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/653cd8b858a3/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/21a64daf8556/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/654da36fb655/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/bdf949e8e2b3/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/966b08de4d55/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d79f/9515602/5d4f7290b314/gr15.jpg

相似文献

[1]
VitRad: A low-cost continuous wave Doppler radar system with 3D-printed horn antennas for human vital sign detection.

HardwareX. 2022-9-20

[2]
Non-Contact Measurement of Human Respiration and Heartbeat Using W-band Doppler Radar Sensor.

Sensors (Basel). 2020-9-12

[3]
Vital Sign Detection during Large-Scale and Fast Body Movements Based on an Adaptive Noise Cancellation Algorithm Using a Single Doppler Radar Sensor.

Sensors (Basel). 2020-7-28

[4]
Multi-Layer Beam Scanning Leaky Wave Antenna for Remote Vital Signs Detection at 60 GHz.

Sensors (Basel). 2023-4-17

[5]
Non-Contact VITAL Signs Monitoring of a Patient Lying on Surgical Bed Using Beamforming FMCW Radar.

Sensors (Basel). 2022-10-25

[6]
Non-Contact Monitoring of Human Vital Signs Using FMCW Millimeter Wave Radar in the 120 GHz Band.

Sensors (Basel). 2021-4-13

[7]
Through the wall human heart beat detection using single channel CW radar.

Front Physiol. 2024-1-24

[8]
Chest Wall Motion Model of Cardiac Activity for Radar-Based Vital-Sign-Detection System.

Sensors (Basel). 2024-3-23

[9]
High Accuracy Heartbeat Detection from CW-Doppler Radar Using Singular Value Decomposition and Matched Filter.

Sensors (Basel). 2021-5-21

[10]
Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology.

Biosensors (Basel). 2016-10-26

引用本文的文献

[1]
A Computational Approach to Increasing the Antenna System's Sensitivity in a Doppler Radar Designed to Detect Human Vital Signs in the UHF-SHF Frequency Ranges.

Sensors (Basel). 2025-5-21

[2]
EmRad: Ubiquitous Vital Sign Sensing Using Compact Continuous-Wave Radars.

IEEE Open J Eng Med Biol. 2024-6-28

[3]
Systematic Literature Review Regarding Heart Rate and Respiratory Rate Measurement by Means of Radar Technology.

Sensors (Basel). 2024-2-4

[4]
Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review.

Polymers (Basel). 2023-5-30

本文引用的文献

[1]
A Deep Learning-Based Camera Approach for Vital Sign Monitoring Using Thermography Images for ICU Patients.

Sensors (Basel). 2021-2-21

[2]
3D Printing Materials for Soft Robotics.

Adv Mater. 2021-5

[3]
3D Printing in Zero G Technology Demonstration Mission: Complete Experimental Results and Summary of Related Material Modeling Efforts.

Int J Adv Manuf Technol. 2019-3-17

[4]
A Direct Phase-Tracking Doppler Radar Using Wavelet Independent Component Analysis for Non-Contact Respiratory and Heart Rate Monitoring.

IEEE Trans Biomed Circuits Syst. 2018-6

[5]
Accurate respiration measurement using DC-coupled continuous-wave radar sensor for motion-adaptive cancer radiotherapy.

IEEE Trans Biomed Eng. 2012-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索